A new procedure for the transesterification of alkyl acetates and formates with model glycerol acetals (GAs: Solketal and glycerol formal) was explored in the absence of any catalysts at 180–275 °C. Highly selective transformations occurred in both batch and continuous-flow (CF) modes; particularly, the enol derivative isopropenyl acetate (iPAc) was the best performing reactant by which quantitative acetylation reactions were achieved with yields on GAs acetates >95%. An excess acylating agent was necessary (2–20 molar equivs), but the unconverted ester was fully recovered and could be reused. The reaction plausibly involved multiple mechanisms where either the electrophilic and the nucleophilic activation of reagents took place through both traces of acetic acid (formed in situ by the hydrolysis of esters) and the autoprotolysis of GAs. iPAc confirmed a superior performance than other esters also for the high-temperature conversion of glycerol; in this case, although acylation and acetalization processes were simultaneously possible, conditions were optimized to achieve the exhaustive transesterification of glycerol to triacetin, in both batch and CF modes. Triacetin was isolated in 99% yield.
High-temperature batch and continuous-flow transesterification of alkyl and enol esters with glycerol and its acetal derivatives
Roberto CalmantiWriting – Original Draft Preparation
;Alvise Perosa;
2018-01-01
Abstract
A new procedure for the transesterification of alkyl acetates and formates with model glycerol acetals (GAs: Solketal and glycerol formal) was explored in the absence of any catalysts at 180–275 °C. Highly selective transformations occurred in both batch and continuous-flow (CF) modes; particularly, the enol derivative isopropenyl acetate (iPAc) was the best performing reactant by which quantitative acetylation reactions were achieved with yields on GAs acetates >95%. An excess acylating agent was necessary (2–20 molar equivs), but the unconverted ester was fully recovered and could be reused. The reaction plausibly involved multiple mechanisms where either the electrophilic and the nucleophilic activation of reagents took place through both traces of acetic acid (formed in situ by the hydrolysis of esters) and the autoprotolysis of GAs. iPAc confirmed a superior performance than other esters also for the high-temperature conversion of glycerol; in this case, although acylation and acetalization processes were simultaneously possible, conditions were optimized to achieve the exhaustive transesterification of glycerol to triacetin, in both batch and CF modes. Triacetin was isolated in 99% yield.File | Dimensione | Formato | |
---|---|---|---|
ACS Sustainable Chem. Eng. 2018 Calmanti.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.