Notwithstanding the increasing amount of researches on the effect of ocean acidification (OA) on marine ecosystems, no consent has emerged on its consequences on many prokaryote-mediated processes. Two mesocosm experiments were performed in coastal Mediterranean areas with different trophic status: the summer oligotrophic Bay of Calvi (BC, Corsica, France) and the winter mesotrophic Bay of Villefranche (BV, France). During these experiments, nine enclosures (∼54 m3) were deployed: 3 unamended controls and 6 elevated CO2, following a gradient up to 1250 μatm. We present results involving free-living viral and prokaryotic standing stocks, bacterial carbon production, abundance of highly active cells (CTC+), and degradation processes (beta-glucosidase, chitinase, leucine-aminopeptidase, lipase and alkaline phosphatase activities). The experiments revealed clear differences in the response of the two prokaryotic communities to CO2 manipulation. Only abundances of heterotrophic prokaryotes, viruses and lipase activity were not affected by CO2 manipulation at both locations. On the contrary, the percent of CTC+ was positively correlated to CO2 only in BC, concomitantly to a bulk reduction of [3H]-leucine uptake. The other tested parameters showed a different response at the two sites suggesting that the trophic regime of the systems plays a fundamental role on the effect of OA on prokaryotes through indirect modifications of the available substrate. Modified degradation rates may affect considerably the export of organic matter to the seafloor and thus ecosystem functioning within the water column. Our results highlight the need to further analyse the consequences of OA in oligotrophic ecosystems with particular focus on dissolved organic matter. © 2015 Elsevier Ltd

Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea

Malfatti F;
2015-01-01

Abstract

Notwithstanding the increasing amount of researches on the effect of ocean acidification (OA) on marine ecosystems, no consent has emerged on its consequences on many prokaryote-mediated processes. Two mesocosm experiments were performed in coastal Mediterranean areas with different trophic status: the summer oligotrophic Bay of Calvi (BC, Corsica, France) and the winter mesotrophic Bay of Villefranche (BV, France). During these experiments, nine enclosures (∼54 m3) were deployed: 3 unamended controls and 6 elevated CO2, following a gradient up to 1250 μatm. We present results involving free-living viral and prokaryotic standing stocks, bacterial carbon production, abundance of highly active cells (CTC+), and degradation processes (beta-glucosidase, chitinase, leucine-aminopeptidase, lipase and alkaline phosphatase activities). The experiments revealed clear differences in the response of the two prokaryotic communities to CO2 manipulation. Only abundances of heterotrophic prokaryotes, viruses and lipase activity were not affected by CO2 manipulation at both locations. On the contrary, the percent of CTC+ was positively correlated to CO2 only in BC, concomitantly to a bulk reduction of [3H]-leucine uptake. The other tested parameters showed a different response at the two sites suggesting that the trophic regime of the systems plays a fundamental role on the effect of OA on prokaryotes through indirect modifications of the available substrate. Modified degradation rates may affect considerably the export of organic matter to the seafloor and thus ecosystem functioning within the water column. Our results highlight the need to further analyse the consequences of OA in oligotrophic ecosystems with particular focus on dissolved organic matter. © 2015 Elsevier Ltd
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S027277141530072X-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.5 MB
Formato Adobe PDF
2.5 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S027277141530072X-mmc1.pdf

Accesso chiuso

Descrizione: Appendix A. Supplementary data
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 504.39 kB
Formato Adobe PDF
504.39 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
post print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 2.99 MB
Formato Adobe PDF
2.99 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2959800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 26
social impact