Phaeodactylum tricornutum was exposed to various toxic substances (zinc, copper or dodecylbenzenesulfonic acid sodium salt) in accordance with the AlgalToxkit(®) protocol based on the UNI EN ISO 10253 method in order to quantitatively compare the responses obtained by traditional growth-rate inhibition tests with morphological (biovolume) and physiological (chlorophyll-a, phaeophytin ratio) endpoints. A novel approach is proposed for detecting early and sub-lethal effects based on biovolume quantification using confocal microscopy coupled with an image analysis system. The results showed that effects on both biovolume and the photosynthetic complex are sensitive and powerful early warning tools for evaluating sub-lethal effects of exposure. Specifically, biovolume showed significant sensitive and early responses for the tested surfactant. Qualitatively, we also observed structural anomalies and effects on natural auto-fluorescence in exposed cells that also represent potentially useful tools for ecotoxicological studies.

Early warning tools for ecotoxicity assessment based on Phaeodactylum tricornutum

Renzi Monia
;
Basset Alberto
2014-01-01

Abstract

Phaeodactylum tricornutum was exposed to various toxic substances (zinc, copper or dodecylbenzenesulfonic acid sodium salt) in accordance with the AlgalToxkit(®) protocol based on the UNI EN ISO 10253 method in order to quantitatively compare the responses obtained by traditional growth-rate inhibition tests with morphological (biovolume) and physiological (chlorophyll-a, phaeophytin ratio) endpoints. A novel approach is proposed for detecting early and sub-lethal effects based on biovolume quantification using confocal microscopy coupled with an image analysis system. The results showed that effects on both biovolume and the photosynthetic complex are sensitive and powerful early warning tools for evaluating sub-lethal effects of exposure. Specifically, biovolume showed significant sensitive and early responses for the tested surfactant. Qualitatively, we also observed structural anomalies and effects on natural auto-fluorescence in exposed cells that also represent potentially useful tools for ecotoxicological studies.
2014
Pubblicato
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2959949
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact