The cellular membrane is a physical barrier that divides the interior of the cell, the cytosol, from the extracellular environment. In this work I focused on the characterization of two membrane proteins involved in physiological processes that maintain the crucial features of cellular membranes. The first protein is Neo1 of Saccharomyces cerevisiae, belonging to the P-IV ATPase family and essential to maintain membrane asymmetry. To this aim, P-IV ATPases translocate phospholipids from the outer to the inner leaflets of the membranes. In humans, malfunction of these proteins are related to pathologies like liver diseases, Alzheimer’s, obesity and type 2 diabetes. Considering the key role of these proteins, the clarification of their mechanism of action is of utmost importance. Neo1 from S. cerevisiae, homologous of a P-IV ATPase subclass in human, was studied Exploiting the high homology between human and yeast P-IV ATPases. Neo1 is the only S. cerevisiae P-IV ATPase essential for cell survival, but its substrates are still a matter of debate. The target protein was expressed as a chimera with a green fluorescence protein (GFP)/histidine tandem tag. For membrane proteins, the choice of the proper solubilization detergent is a crucial step for their characterization. Among the various detergents tested for Neo1 solubilization, a pure and stable protein could only be obtained in LMNG. Circular dichroism analysis of the sample indicated a melting temperature in the range 40-50° C. Activity assays were performed on the purified protein in presence of different lipids in order to identify Neo1 substrate. Mutants of the protein were expressed to test the role of specific residues in protein activity. Negative staining EM images at high magnification showed a homogeneous sample without aggregation, representing an excellent starting point for further analysis. The second protein is the polymerase Wzy from Pseudomonas aeruginosa. P. aeruginosa is a pathogen related to hospital-acquired infections and often found in the lungs of cystic fibrosis patients. In bacteria, a thick polysaccharide wall covers the cell membrane and is involved in crucial infection steps. The glycosyltransferase Wzy is a fundamental part of the pathway for the production of the lipopolysaccharide (LPS) on the outer membrane of gram-negative bacteria and its role is to form new glycosidic bonds between short oligosaccharide units, thus contributing to the production of the LPS. As the LPS is highly specific for each bacterial species and strain, inhibitors of its biosynthetic route would be selective against a specific bacterium. Understanding Wzy structure would be a step forward in the rational design of novel antibiotics. In this study, Wzy was cloned and expressed in E. coli as a chimera with GFP and His tags. The protein was solubilized in different detergents and purified with chromatographic methods. The purification results allowed to identify the optimal detergents to obtain a sample suitable for crystallization or EM analysis. Stability of the protein was tested against a temperature gradient with Circular Dichroism, Raman spectroscopy, and fluorescence spectroscopy. With CD and fluorescence spectroscopy, a melting point of about 58° C was determined. From crystallization trials different crystals were obtained and analyzed at the XRD2 beamline of the Elettra Synchrotron, and data up to 6 Å resolution were obtained. Structure solution revealed that crystals were formed by a contaminant present in the sample, the Cytochrome o Ubiquinol Oxidase. Further purification experiments suggested a tight interaction between Wzy and the Cytochrome o Ubiquinol Oxidase. Negative staining EM analysis was carried out on the protein-contaminant sample, confirming that the sample is monodisperse and homogeneous and is therefore suitable for further EM analysis.

Lo scopo di questo lavoro è la caratterizzazione di due proteine di membrana coinvolte in processi fisiologici per il mantenimento delle caratteristiche fondamentali delle membrane cellulari. La prima proteina è Neo1 da Saccharomyces cerevisiae, appartenente alla classe delle P-IV ATPasi, proteine essenziali nel mantenimento dell’asimmetria della membrana. A questo scopo, le P-IV ATPasi trasferiscono fosfolipidi dalla parte esterna delle membrane a quella interna. Nell’uomo, malfunzionamenti di queste proteine sono connessi a malattie come malattie del fegato, Alzheimer, obesità e diabete di tipo 2. Visto il ruolo cruciale di queste proteine, la delucidazione del loro meccanismo di azione è di fondamentale importanza. Neo1 da S. cerevisiae, omologa ad una sottoclasse di proteine umane, è stata studiata sfruttando l’alta omologia tra P-IV ATPasi umane e di lievito. Neo1 è l’unica P-IV ATPasi di S. cerevisiae essenziale per la sopravvivenza cellulare, ma i suoi substrati sono tuttora sconosciuti. La proteina selezionata è stata espressa come chimera con un Green Fluorescent Protein (GFP)/istidine tandem tag. Tra i vari detergenti testati per la solubilizzazione di Neo1, solo in LMNG è stato possibile ottenere una proteina purificata e stabile. Con analisi al dicroismo circolare una temperatura di fusione tra 40-50°Cè stata rilevata. Saggi di attività sono stati effettuati sulla proteina in presenza di diversi lipidi per identificare il substrato di Neo1. Mutanti della proteina sono stati espressi per testare il ruolo di specifici residui coinvolti nell’attività della proteina. Nelle immagini EM a colorazione negativa ad alto ingrandimento di Neo1 si vede un campione senza aggregazione. Questo risultato rappresenta pertanto un eccellente punto di partenza per analisi future. La seconda proteina è Wzy da Pseudomonas aeruginosa, batterio connesso ad infezioni ospedaliere spesso trovato nei polmoni di pazienti affetti da fibrosi cistica. Nei batteri, un denso muro di polisaccaridi ricopre la membrana cellulare ed è coinvolto in processi cruciali durante l’infezione batterica. Wzy formara nuovi legami glicosidici tra corte unità oligosaccaridiche, contribuendo così alla formazione del lipopolisaccaride (LPS) che compone il muro polisaccaridico nei batteri gram negativi. Poiché l’LPS è altamente specifico per ogni batterio e ceppo, inibitori della sua via di biosintesi dovrebbero essere selettivi contro un batterio specifico. Pertanto la comprensione della struttura di Wzy rappresenterebbe un passo avanti per la creazione di nuovi antibiotici contro P. aeruginosa. In questo studio, Wzy è stata clonata e overespressa in E. coli come chimera assieme alla GFP e un tag di istidine. La proteina è stata solubilizzata in diversi detergenti e purificata con metodi cromatografici. Dai risultati della purificazione è stato possibile identificare i detergenti migliori per ottenere una proteina pura e stabile perle analisi successive. La stabilità è stata testata con dicroismo circolare, spettroscopia Raman e spettroscopia di fluorescenza. Sia in CD che in spettroscopia di fluorescenza, è stato determinato un punto di fusione di circa 58° C. Diversi cristalli sono stati ottenuti da prove di cristallizzazione. Da esperimenti di difrazione alla linea XRD2 del Sincrotrone Elettra su questi cristalli, dati a circa 6 Å di risoluzione sono stati ottenuti, ma la soluzione della struttura ha rivelato che questi cristalli sono formati da un contaminante presente nel campione, la Citocromo O Ubiquinolo Ossidasi. Esperimenti successivi hanno suggerito una stretta interazione tra Wzy e la Citocromo O Ubiquinolo Ossidasi, con un effetto di stabilizzazionesu Wzy. Sul campione di proteina e contaminante sono stati effettuate analisi EM a colorazione negativa, confermando che il campione è monodisperso e omogeneo, essendo pertanto utilizzabile per future analisi EM.

Characterization of two membrane proteins: a P-IV ATPase from yeast and a bacterial polymerase / Deganutti, Caterina. - (2020 Mar 13).

Characterization of two membrane proteins: a P-IV ATPase from yeast and a bacterial polymerase

DEGANUTTI, CATERINA
2020-03-13

Abstract

The cellular membrane is a physical barrier that divides the interior of the cell, the cytosol, from the extracellular environment. In this work I focused on the characterization of two membrane proteins involved in physiological processes that maintain the crucial features of cellular membranes. The first protein is Neo1 of Saccharomyces cerevisiae, belonging to the P-IV ATPase family and essential to maintain membrane asymmetry. To this aim, P-IV ATPases translocate phospholipids from the outer to the inner leaflets of the membranes. In humans, malfunction of these proteins are related to pathologies like liver diseases, Alzheimer’s, obesity and type 2 diabetes. Considering the key role of these proteins, the clarification of their mechanism of action is of utmost importance. Neo1 from S. cerevisiae, homologous of a P-IV ATPase subclass in human, was studied Exploiting the high homology between human and yeast P-IV ATPases. Neo1 is the only S. cerevisiae P-IV ATPase essential for cell survival, but its substrates are still a matter of debate. The target protein was expressed as a chimera with a green fluorescence protein (GFP)/histidine tandem tag. For membrane proteins, the choice of the proper solubilization detergent is a crucial step for their characterization. Among the various detergents tested for Neo1 solubilization, a pure and stable protein could only be obtained in LMNG. Circular dichroism analysis of the sample indicated a melting temperature in the range 40-50° C. Activity assays were performed on the purified protein in presence of different lipids in order to identify Neo1 substrate. Mutants of the protein were expressed to test the role of specific residues in protein activity. Negative staining EM images at high magnification showed a homogeneous sample without aggregation, representing an excellent starting point for further analysis. The second protein is the polymerase Wzy from Pseudomonas aeruginosa. P. aeruginosa is a pathogen related to hospital-acquired infections and often found in the lungs of cystic fibrosis patients. In bacteria, a thick polysaccharide wall covers the cell membrane and is involved in crucial infection steps. The glycosyltransferase Wzy is a fundamental part of the pathway for the production of the lipopolysaccharide (LPS) on the outer membrane of gram-negative bacteria and its role is to form new glycosidic bonds between short oligosaccharide units, thus contributing to the production of the LPS. As the LPS is highly specific for each bacterial species and strain, inhibitors of its biosynthetic route would be selective against a specific bacterium. Understanding Wzy structure would be a step forward in the rational design of novel antibiotics. In this study, Wzy was cloned and expressed in E. coli as a chimera with GFP and His tags. The protein was solubilized in different detergents and purified with chromatographic methods. The purification results allowed to identify the optimal detergents to obtain a sample suitable for crystallization or EM analysis. Stability of the protein was tested against a temperature gradient with Circular Dichroism, Raman spectroscopy, and fluorescence spectroscopy. With CD and fluorescence spectroscopy, a melting point of about 58° C was determined. From crystallization trials different crystals were obtained and analyzed at the XRD2 beamline of the Elettra Synchrotron, and data up to 6 Å resolution were obtained. Structure solution revealed that crystals were formed by a contaminant present in the sample, the Cytochrome o Ubiquinol Oxidase. Further purification experiments suggested a tight interaction between Wzy and the Cytochrome o Ubiquinol Oxidase. Negative staining EM analysis was carried out on the protein-contaminant sample, confirming that the sample is monodisperse and homogeneous and is therefore suitable for further EM analysis.
13-mar-2020
DE ZORZI, RITA
32
2018/2019
Settore CHIM/03 - Chimica Generale e Inorganica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
DissertationDEGANUTTI.pdf

Open Access dal 13/03/2021

Descrizione: tesi di dottorato
Dimensione 5.67 MB
Formato Adobe PDF
5.67 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2961531
 Avviso

Registrazione in corso di verifica.
La registrazione di questo prodotto non è ancora stata validata in ArTS.

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact