In this paper we propose an efficiently preconditioned Newton method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners based on the BFGS update formula is proposed, for the Preconditioned Conjugate Gradient solution of the linearized Newton system to solve A u = q(u) u, q(u) being the Rayleigh Quotient. We give theoretical evidence that the sequence of preconditioned Jacobians remains close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to one million unknowns account for the efficiency of the proposed algorithm which reveals competitive with the Jacobi-Davidson method on all the test problems.

Efficiently preconditioned inexact Newton methods for large symmetric eigenvalue problems

A. Martínez
2015-01-01

Abstract

In this paper we propose an efficiently preconditioned Newton method for the computation of the leftmost eigenpairs of large and sparse symmetric positive definite matrices. A sequence of preconditioners based on the BFGS update formula is proposed, for the Preconditioned Conjugate Gradient solution of the linearized Newton system to solve A u = q(u) u, q(u) being the Rayleigh Quotient. We give theoretical evidence that the sequence of preconditioned Jacobians remains close to the identity matrix if the initial preconditioned Jacobian is so. Numerical results onto matrices arising from various realistic problems with size up to one million unknowns account for the efficiency of the proposed algorithm which reveals competitive with the Jacobi-Davidson method on all the test problems.
File in questo prodotto:
File Dimensione Formato  
oms.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 362.25 kB
Formato Adobe PDF
362.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2961883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact