In this note we reprove the Lipschitz stability for the inverse problem for the Schrödinger operator with finite-dimensional potentials by using quan- titative Runge approximation results. This provides a quantification of the Schrödinger version of the argument from Kohn and Vogelius [Determin- ing conductivity by boundary measurements. II. Interior results. Comm Pure Appl Math. 1985;38(5):643–667] and presents a slight variant of the strategy considered in Alessandrini et al. [Lipschitz stability for a piece- wise linear Schrödinger potential from local Cauchy data. Asymptotic Anal. 2018;108:115–149] which may prove useful also in the context of more general operators.
On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem
Eva Sincich
2020-01-01
Abstract
In this note we reprove the Lipschitz stability for the inverse problem for the Schrödinger operator with finite-dimensional potentials by using quan- titative Runge approximation results. This provides a quantification of the Schrödinger version of the argument from Kohn and Vogelius [Determin- ing conductivity by boundary measurements. II. Interior results. Comm Pure Appl Math. 1985;38(5):643–667] and presents a slight variant of the strategy considered in Alessandrini et al. [Lipschitz stability for a piece- wise linear Schrödinger potential from local Cauchy data. Asymptotic Anal. 2018;108:115–149] which may prove useful also in the context of more general operators.File | Dimensione | Formato | |
---|---|---|---|
On Runge approximation and Lipschitz stability for a finite dimensional Schr dinger inverse problem.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
sincich.pdf
Open Access dal 18/03/2021
Descrizione: This is an original manuscript of an article published by Taylor & Francis in Applicable Analysis on17 march 2020, available online: https://www.tandfonline.com/doi/abs/10.1080/00036811.2020.1738403
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Digital Rights Management non definito
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.