In this note we reprove the Lipschitz stability for the inverse problem for the Schrödinger operator with finite-dimensional potentials by using quan- titative Runge approximation results. This provides a quantification of the Schrödinger version of the argument from Kohn and Vogelius [Determin- ing conductivity by boundary measurements. II. Interior results. Comm Pure Appl Math. 1985;38(5):643–667] and presents a slight variant of the strategy considered in Alessandrini et al. [Lipschitz stability for a piece- wise linear Schrödinger potential from local Cauchy data. Asymptotic Anal. 2018;108:115–149] which may prove useful also in the context of more general operators.

On Runge approximation and Lipschitz stability for a finite-dimensional Schrödinger inverse problem

Eva Sincich
2020-01-01

Abstract

In this note we reprove the Lipschitz stability for the inverse problem for the Schrödinger operator with finite-dimensional potentials by using quan- titative Runge approximation results. This provides a quantification of the Schrödinger version of the argument from Kohn and Vogelius [Determin- ing conductivity by boundary measurements. II. Interior results. Comm Pure Appl Math. 1985;38(5):643–667] and presents a slight variant of the strategy considered in Alessandrini et al. [Lipschitz stability for a piece- wise linear Schrödinger potential from local Cauchy data. Asymptotic Anal. 2018;108:115–149] which may prove useful also in the context of more general operators.
File in questo prodotto:
File Dimensione Formato  
On Runge approximation and Lipschitz stability for a finite dimensional Schr dinger inverse problem.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
sincich.pdf

Open Access dal 18/03/2021

Descrizione: This is an original manuscript of an article published by Taylor & Francis in Applicable Analysis on17 march 2020, available online: https://www.tandfonline.com/doi/abs/10.1080/00036811.2020.1738403
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2962370
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact