We present new, deep observations of the Phoenix cluster from Chandra, the Hubble Space Telescope, and the Karl Jansky Very Large Array. These data provide an order-of-magnitude improvement in depth and/or angular resolution over previous observations at X-ray, optical, and radio wavelengths. We find that the one-dimensional temperature and entropy profiles are consistent with expectations for pure-cooling models. In particular, the entropy profile is well fit by a single power law at all radii, with no evidence for excess entropy in the core. In the inner ∼10 kpc, the cooling time is shorter than any other known cluster by an order of magnitude, while the ratio of the cooling time to freefall time (t cool/t ff) approaches unity, signaling that the intracluster medium is unable to resist multiphase condensation on kpc scales. The bulk of the cooling in the inner ∼20 kpc is confined to a low-entropy filament extending northward from the central galaxy, with t cool/t ff ∼ 1 over the length of the filament. In this filament, we find evidence for ∼1010 M ☉ in cool (∼104 K) gas (as traced by the [O II]λλ3726,3729 doublet), which is coincident with the low-entropy filament and absorbing soft X-rays. The bulk of this cool gas is draped around and behind a pair of X-ray cavities, presumably bubbles that have been inflated by radio jets. These data support a picture in which active galactic nucleus feedback is promoting the formation of a multiphase medium via uplift of low-entropy gas, either via ordered or chaotic (turbulent) motions.

Anatomy of a Cooling Flow: The Feedback Response to Pure Cooling in the Core of the Phoenix Cluster

Saro, A.;
2019-01-01

Abstract

We present new, deep observations of the Phoenix cluster from Chandra, the Hubble Space Telescope, and the Karl Jansky Very Large Array. These data provide an order-of-magnitude improvement in depth and/or angular resolution over previous observations at X-ray, optical, and radio wavelengths. We find that the one-dimensional temperature and entropy profiles are consistent with expectations for pure-cooling models. In particular, the entropy profile is well fit by a single power law at all radii, with no evidence for excess entropy in the core. In the inner ∼10 kpc, the cooling time is shorter than any other known cluster by an order of magnitude, while the ratio of the cooling time to freefall time (t cool/t ff) approaches unity, signaling that the intracluster medium is unable to resist multiphase condensation on kpc scales. The bulk of the cooling in the inner ∼20 kpc is confined to a low-entropy filament extending northward from the central galaxy, with t cool/t ff ∼ 1 over the length of the filament. In this filament, we find evidence for ∼1010 M ☉ in cool (∼104 K) gas (as traced by the [O II]λλ3726,3729 doublet), which is coincident with the low-entropy filament and absorbing soft X-rays. The bulk of this cool gas is draped around and behind a pair of X-ray cavities, presumably bubbles that have been inflated by radio jets. These data support a picture in which active galactic nucleus feedback is promoting the formation of a multiphase medium via uplift of low-entropy gas, either via ordered or chaotic (turbulent) motions.
2019
Pubblicato
https://iopscience.iop.org/article/10.3847/1538-4357/ab464c/meta
File in questo prodotto:
File Dimensione Formato  
1904.08942.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 7.89 MB
Formato Adobe PDF
7.89 MB Adobe PDF Visualizza/Apri
McDonald_2019_ApJ_885_63.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2962474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 30
social impact