We present measurements of the X-ray observables of the intracluster medium (ICM), including luminosity L X , ICM mass M ICM, emission-weighted mean temperature T X , and integrated pressure Y X , that are derived from XMM-Newton X-ray observations of a Sunyaev-Zel’dovich effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range 0.20 < z < 1.5. We constrain the best-fit power-law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable-to-mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters (M 500 ≥ 3 × 1014 M ☉) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with ≥2.5σ significance in the case of L X and M ICM. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for L X . There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, but the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.

X-Ray Properties of SPT-selected Galaxy Clusters at 0.2 < z < 1.5 Observed with XMM-Newton

Saro, Alex;
2019-01-01

Abstract

We present measurements of the X-ray observables of the intracluster medium (ICM), including luminosity L X , ICM mass M ICM, emission-weighted mean temperature T X , and integrated pressure Y X , that are derived from XMM-Newton X-ray observations of a Sunyaev-Zel’dovich effect (SZE) selected sample of 59 galaxy clusters from the South Pole Telescope SPT-SZ survey that span the redshift range 0.20 < z < 1.5. We constrain the best-fit power-law scaling relations between X-ray observables, redshift, and halo mass. The halo masses are estimated based on previously published SZE observable-to-mass scaling relations, calibrated using information that includes the halo mass function. Employing SZE-based masses in this sample enables us to constrain these scaling relations for massive galaxy clusters (M 500 ≥ 3 × 1014 M ☉) to the highest redshifts where these clusters exist without concern for X-ray selection biases. We find that the mass trends are steeper than self-similarity in all cases, and with ≥2.5σ significance in the case of L X and M ICM. The redshift trends are consistent with the self-similar expectation, but the uncertainties remain large. Core-included scaling relations tend to have steeper mass trends for L X . There is no convincing evidence for a redshift-dependent mass trend in any observable. The constraints on the amplitudes of the fitted scaling relations are currently limited by the systematic uncertainties on the SZE-based halo masses, but the redshift and mass trends are limited by the X-ray sample size and the measurement uncertainties of the X-ray observables.
File in questo prodotto:
File Dimensione Formato  
Bulbul_2019_ApJ_871_50.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.76 MB
Formato Adobe PDF
3.76 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11368_2962498_Post_Print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 3.88 MB
Formato Adobe PDF
3.88 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2962498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 50
social impact