Transitional water ecosystems (TWEs), despite their ecological and economic importance, are largely affected by human pressures that could be responsible for significant inputs of litter in the marine environment. Plastic input in coastal ponds, lagoons, river deltas and estuaries, could be driven by a wide range of human activities such as agriculture, waste disposal, municipal and industrial wastewater effluents, aquaculture, fishing and touristic activities and urban impacts. However, it remains unknown what the impact of plastic input in these TWEs could have on natural capital and, therefore, the ability for an ecosystem to provide goods and services to human beings. Given the large interest with regards to the conservation of transitional water ecosystems and the clear exposure risk to plastic and microplastic pollution, this study aims to perform: (i) a bibliometric analyses on existing literature regarding the levels of marine litter in such environments; (ii) a selection among the available literature of homogeneous data; and (iii) statistical analyses to explore data variability. Results suggest that: (i) research on microplastics in these ecosystems did not begin to be published until 2013 for lagoons, 2014 for river mouths and 2019 for coastal ponds. The majority of articles published on studies of microplastics in lagoons did not occur until 2019; (ii) sediments represent the matrix on which sampling and extraction variability allow the statistical analyses on data reported by the literature; (iii) the Analysis of Similarities (ANOSIM) test two-way evidenced that the level of protection of marine and terrestrial areas produced similar values while the habitat type showed low significance in terms of its effect on microplastic levels, shape and size in sediments.

Marine litter in transitionalwater ecosystems: State of the art review based on a bibliometric analysis

Renzi M.
;
2020-01-01

Abstract

Transitional water ecosystems (TWEs), despite their ecological and economic importance, are largely affected by human pressures that could be responsible for significant inputs of litter in the marine environment. Plastic input in coastal ponds, lagoons, river deltas and estuaries, could be driven by a wide range of human activities such as agriculture, waste disposal, municipal and industrial wastewater effluents, aquaculture, fishing and touristic activities and urban impacts. However, it remains unknown what the impact of plastic input in these TWEs could have on natural capital and, therefore, the ability for an ecosystem to provide goods and services to human beings. Given the large interest with regards to the conservation of transitional water ecosystems and the clear exposure risk to plastic and microplastic pollution, this study aims to perform: (i) a bibliometric analyses on existing literature regarding the levels of marine litter in such environments; (ii) a selection among the available literature of homogeneous data; and (iii) statistical analyses to explore data variability. Results suggest that: (i) research on microplastics in these ecosystems did not begin to be published until 2013 for lagoons, 2014 for river mouths and 2019 for coastal ponds. The majority of articles published on studies of microplastics in lagoons did not occur until 2019; (ii) sediments represent the matrix on which sampling and extraction variability allow the statistical analyses on data reported by the literature; (iii) the Analysis of Similarities (ANOSIM) test two-way evidenced that the level of protection of marine and terrestrial areas produced similar values while the habitat type showed low significance in terms of its effect on microplastic levels, shape and size in sediments.
2020
Pubblicato
https://www.mdpi.com/2073-4441/12/2/612
File in questo prodotto:
File Dimensione Formato  
Marine_litter_review_waterpdf.pdf

accesso aperto

Descrizione: This article is licensed under a Creative Commons Attribution 4.0 International License,
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 9.52 MB
Formato Adobe PDF
9.52 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2963285
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact