This study aims to evaluate effects induced by the exposure of key marine species to leachates and suspensions of different particle-size of PET microparticles, a plastic polymer that is actually considered safe for the environment. Leachates and suspensions of small (5–60 μm); medium (61–499 μm) and large (500–3000 μm) PET were tested on bacteria (V. fischeri; UNI EN ISO 11348-3:2009), algae (P. tricornutum; UNI EN ISO 10253:2016E), and echinoderms (P. lividus; EPA 600/R-95-136/Section 15) species both under standard (8.0) and acidified (7.5) pH conditions. Results obtained show that: i) conversely to larval stage of P. lividus, bacterial and algal tested species are not sensitive to PET pollution under all tested conditions; ii) different tested particle-sizes of PET produce effects that are not always related to their particle-size; iii) differences comparing acidified and standard pH conditions were recorded; iv) concerning echinoderms, food availability produce significant differences compared to fasting conditions; v) special attention on the possible interactions between MPs and other stressors (e.g., food and pH) is needed in order to give a better picture of natural occurring dynamics on marine ecosystems especially in the future frame of global changes.

PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations

Piccardo M.;Terlizzi A.;Renzi M.
2020-01-01

Abstract

This study aims to evaluate effects induced by the exposure of key marine species to leachates and suspensions of different particle-size of PET microparticles, a plastic polymer that is actually considered safe for the environment. Leachates and suspensions of small (5–60 μm); medium (61–499 μm) and large (500–3000 μm) PET were tested on bacteria (V. fischeri; UNI EN ISO 11348-3:2009), algae (P. tricornutum; UNI EN ISO 10253:2016E), and echinoderms (P. lividus; EPA 600/R-95-136/Section 15) species both under standard (8.0) and acidified (7.5) pH conditions. Results obtained show that: i) conversely to larval stage of P. lividus, bacterial and algal tested species are not sensitive to PET pollution under all tested conditions; ii) different tested particle-sizes of PET produce effects that are not always related to their particle-size; iii) differences comparing acidified and standard pH conditions were recorded; iv) concerning echinoderms, food availability produce significant differences compared to fasting conditions; v) special attention on the possible interactions between MPs and other stressors (e.g., food and pH) is needed in order to give a better picture of natural occurring dynamics on marine ecosystems especially in the future frame of global changes.
2020
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0048969720304575
File in questo prodotto:
File Dimensione Formato  
88_IF.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0048969720304575-mmc1.pdf

Accesso chiuso

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2963301
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 76
social impact