The properties of atomically thin materials essentially depend on their structures, including impurities, defects and interfaces with underlying substrates. Thus, the detailed structural information is relevant for creation of 2D materials with desired properties. Here, we explore the capabilities of photoelectron diffraction and holography for structural analysis of atomically thin layers using as examples such systems as h-BN, graphene, and modified graphene with boron impurities. We show that for planar 2D crystals with commensurate interface to the substrate, it is possible to visualize the interface and impurities with high spatial resolution, and to distinguish possible non-equivalent structural units. Our approach applied to B-doped graphene on Ni(1 1 1) and Co(0 0 0 1) surfaces has allowed to reveal asymmetry of boron concentrations in the two carbon sublattices and established its dependence on the applied synthesis procedure and chosen substrate. The obtained results suggest that such approach can be widely applied for studies of various 2D systems, where the structures of interfaces and defects are of remarkable importance.

Decoding the structure of interfaces and impurities in 2D materials by photoelectron holography

Cossaro A.;Verdini A.;
2019

Abstract

The properties of atomically thin materials essentially depend on their structures, including impurities, defects and interfaces with underlying substrates. Thus, the detailed structural information is relevant for creation of 2D materials with desired properties. Here, we explore the capabilities of photoelectron diffraction and holography for structural analysis of atomically thin layers using as examples such systems as h-BN, graphene, and modified graphene with boron impurities. We show that for planar 2D crystals with commensurate interface to the substrate, it is possible to visualize the interface and impurities with high spatial resolution, and to distinguish possible non-equivalent structural units. Our approach applied to B-doped graphene on Ni(1 1 1) and Co(0 0 0 1) surfaces has allowed to reveal asymmetry of boron concentrations in the two carbon sublattices and established its dependence on the applied synthesis procedure and chosen substrate. The obtained results suggest that such approach can be widely applied for studies of various 2D systems, where the structures of interfaces and defects are of remarkable importance.
Pubblicato
https://iopscience.iop.org/article/10.1088/2053-1583/ab3ea8
File in questo prodotto:
File Dimensione Formato  
Usachov_2019_2D_Mater._6_045046.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2964115
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact