Enantiomer-specific identification of chiral molecules in natural extracts is a challenging task, as many routine analytical techniques fail to provide selectivity in multicomponent mixtures. Here we describe an alternative approach, based on the combination of ion mobility-mass spectrometry (IM-MS) and quantum chemistry (QM), for the direct enantiomers differentiation in crude essential oils. The identification of α-bisabolol enantiomers contained in the raw essential oil (EO) from the Corsican Xanthium italicum fruits is reported as a proof-of-concept. Accordingly, IM-MS experiments performed in Ag+-doped methanol revealed the presence of both (+)- and (-)-α-bisabolol in the EO, while molecular simulations provided the structures of the two α-bisabolol enantiomer silver(I) adducts.

Direct Identification of α-Bisabolol Enantiomers in an Essential Oil Using a Combined Ion Mobility-Mass Spectrometry/Quantum Chemistry Approach

Laurini E.;Pricl S.;
2020-01-01

Abstract

Enantiomer-specific identification of chiral molecules in natural extracts is a challenging task, as many routine analytical techniques fail to provide selectivity in multicomponent mixtures. Here we describe an alternative approach, based on the combination of ion mobility-mass spectrometry (IM-MS) and quantum chemistry (QM), for the direct enantiomers differentiation in crude essential oils. The identification of α-bisabolol enantiomers contained in the raw essential oil (EO) from the Corsican Xanthium italicum fruits is reported as a proof-of-concept. Accordingly, IM-MS experiments performed in Ag+-doped methanol revealed the presence of both (+)- and (-)-α-bisabolol in the EO, while molecular simulations provided the structures of the two α-bisabolol enantiomer silver(I) adducts.
2020
26-mar-2020
Pubblicato
File in questo prodotto:
File Dimensione Formato  
proof_JNP.pdf

Open Access dal 27/03/2021

Descrizione: main paper
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri
acs.jnatprod.9b00982.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
np9b00982_si_001.pdf

accesso aperto

Descrizione: Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 431.84 kB
Formato Adobe PDF
431.84 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2964152
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact