The discovery of novel plant resistance (R) genes (including their homologs and analogs) opened interesting possibilities for controlling plant diseases caused by several pathogens. However, due to environmental pressure and high selection operated by pathogens, several crop plants have lost specificity, broad-spectrum or durability of resistance. On the other hand, the advances in plant genome sequencing and biotechnological approaches, combined with the increasing knowledge on R-genes have provided new insights on their applications for plant genetic breeding, allowing the identification and implementation of novel and efficient strategies that enhance or optimize their use for efficiently controlling plant diseases. The present review focuses on main perspectives of application of R-genes and its co-players for the acquisition of resistance to pathogens in cultivated plants, with emphasis on biotechnological inferences, including transgenesis, cisgenesis, directed mutagenesis and gene editing, with examples of success and challenges to be faced.
Resistance (R) Genes: Applications and Prospects for Plant Biotechnology and Breeding
Crovella, Sergio;
2017-01-01
Abstract
The discovery of novel plant resistance (R) genes (including their homologs and analogs) opened interesting possibilities for controlling plant diseases caused by several pathogens. However, due to environmental pressure and high selection operated by pathogens, several crop plants have lost specificity, broad-spectrum or durability of resistance. On the other hand, the advances in plant genome sequencing and biotechnological approaches, combined with the increasing knowledge on R-genes have provided new insights on their applications for plant genetic breeding, allowing the identification and implementation of novel and efficient strategies that enhance or optimize their use for efficiently controlling plant diseases. The present review focuses on main perspectives of application of R-genes and its co-players for the acquisition of resistance to pathogens in cultivated plants, with emphasis on biotechnological inferences, including transgenesis, cisgenesis, directed mutagenesis and gene editing, with examples of success and challenges to be faced.File | Dimensione | Formato | |
---|---|---|---|
Pandolfi_2017.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
9.18 MB
Formato
Adobe PDF
|
9.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.