The concise synthesis of sulfur-enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur-enriched-reduced GO (S-rGO). Various techniques, such as X-ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S-rGO with polyoxometalate (POM) as a cathode-active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S-rGO surface. This battery, based on a POM/S-rGO complex, exhibited greater cycling stability for the charge-discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur-containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.

Concise, Single-Step Synthesis of Sulfur-Enriched Graphene: Immobilization of Molecular Clusters and Battery Applications

Criado A.;Syrgiannis Z.
;
Prato M.
2020

Abstract

The concise synthesis of sulfur-enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur-enriched-reduced GO (S-rGO). Various techniques, such as X-ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S-rGO with polyoxometalate (POM) as a cathode-active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S-rGO surface. This battery, based on a POM/S-rGO complex, exhibited greater cycling stability for the charge-discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur-containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.
11-mag-2020
Pubblicato
https://onlinelibrary.wiley.com/doi/10.1002/anie.201913578
File in questo prodotto:
File Dimensione Formato  
anie.201913578.pdf

accesso aperto

Descrizione: full article
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 4.23 MB
Formato Adobe PDF
4.23 MB Adobe PDF Visualizza/Apri
anie.201913578.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.14 MB
Formato Adobe PDF
3.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2964498
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact