The oxygen in Earth’s atmosphere is there primarily because of water oxidation performed by photosynthetic organisms using solar light and one specialized protein complex, photosystem II (PSII). High-resolution imaging of the PSII ‘core’ complex shows the ideal co-localization of multi-chromophore light-harvesting antennas with the functional reaction centre. Man-made systems are still far from replicating the complexity of PSII, as the majority of PSII mimetics have been limited to photocatalytic dyads based on a 1:1 ratio of a light absorber, generally a Ru–polypyridine complex, with a water oxidation catalyst. Here we report the self-assembly of multi-perylene-bisimide chromophores (PBI) shaped to function by interaction with a polyoxometalate water-oxidation catalyst (Ru4POM). The resulting [PBI]5Ru4POM complex shows a robust amphiphilic structure and dynamic aggregation into large two-dimensional paracrystalline domains, a redshifted light-harvesting efficiency of >40% and favourable exciton accumulation, with a peak quantum efficiency using ‘green’ photons (λ > 500 nm). The modularity of the building blocks and the simplicity of the non-covalent chemistry offer opportunities for innovation in artificial photosynthesis.

Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation

Syrgiannis Z.;Rigodanza F.;Volpato G. A.;Demitri N.;Guldi D. M.;Prato M.
2019

Abstract

The oxygen in Earth’s atmosphere is there primarily because of water oxidation performed by photosynthetic organisms using solar light and one specialized protein complex, photosystem II (PSII). High-resolution imaging of the PSII ‘core’ complex shows the ideal co-localization of multi-chromophore light-harvesting antennas with the functional reaction centre. Man-made systems are still far from replicating the complexity of PSII, as the majority of PSII mimetics have been limited to photocatalytic dyads based on a 1:1 ratio of a light absorber, generally a Ru–polypyridine complex, with a water oxidation catalyst. Here we report the self-assembly of multi-perylene-bisimide chromophores (PBI) shaped to function by interaction with a polyoxometalate water-oxidation catalyst (Ru4POM). The resulting [PBI]5Ru4POM complex shows a robust amphiphilic structure and dynamic aggregation into large two-dimensional paracrystalline domains, a redshifted light-harvesting efficiency of >40% and favourable exciton accumulation, with a peak quantum efficiency using ‘green’ photons (λ > 500 nm). The modularity of the building blocks and the simplicity of the non-covalent chemistry offer opportunities for innovation in artificial photosynthesis.
Pubblicato
https://www.nature.com/articles/s41557-018-0172-y
File in questo prodotto:
File Dimensione Formato  
bonchio2018.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
natchempostprint.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 23.33 MB
Formato Adobe PDF
23.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2964549
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 84
social impact