Hybrid diimidazolium-based ionogels were obtained by dispersing nitrogen-doped carbon nanodots (NCNDs) in ionic liquid (IL) solutions and by using dicationic organic salts as gelators. The properties of the NCND-ionogels were studied in terms of thermal stability, mechanical strength, morphology, rheological, and microscopic analyses. Insights into the formation of the hybrid soft material were attained from kinetics of sol-gel phase transition and from estimating the size of the aggregates, obtained from opacity and resonance light-scattering measurements. We demonstrate that, on one hand, NCNDs were able to favor the gel formation both in the presence of gelating and nongelating ILs. On the other hand, the gelatinous matrix retains and, in some cases, improves the properties of NCNDs. The NCND-ionogels showed the typical fluorescence emission of the carbon dots and a notable antiradical activity, with higher efficiency as compared to the single components. The presented hybrid materials hold great promise for topical applications in antioxidant fields.

Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity

Arcudi F.;Prato M.
2018-01-01

Abstract

Hybrid diimidazolium-based ionogels were obtained by dispersing nitrogen-doped carbon nanodots (NCNDs) in ionic liquid (IL) solutions and by using dicationic organic salts as gelators. The properties of the NCND-ionogels were studied in terms of thermal stability, mechanical strength, morphology, rheological, and microscopic analyses. Insights into the formation of the hybrid soft material were attained from kinetics of sol-gel phase transition and from estimating the size of the aggregates, obtained from opacity and resonance light-scattering measurements. We demonstrate that, on one hand, NCNDs were able to favor the gel formation both in the presence of gelating and nongelating ILs. On the other hand, the gelatinous matrix retains and, in some cases, improves the properties of NCNDs. The NCND-ionogels showed the typical fluorescence emission of the carbon dots and a notable antiradical activity, with higher efficiency as compared to the single components. The presented hybrid materials hold great promise for topical applications in antioxidant fields.
File in questo prodotto:
File Dimensione Formato  
acsnano.7b07529.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.38 MB
Formato Adobe PDF
3.38 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
nn7b07529_si_001.pdf

Accesso chiuso

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Digital Rights Management non definito
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2964557
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 80
social impact