We show that the most distant X-ray-detected cluster known to date, Cl. J1001 at z(spec) = 2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10 '') in deep 0.'' 75 resolution VLA 3 GHz imaging, with S-3 GHz > 8 mu Jy. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg(2) field using radio-detected 3 GHz sources and looking for peaks in Sigma(5) density maps. Cl J1001 is the strongest overdensity by far with > 10 sigma, with a simple z(phot) > 1.5 preselection. A cruder photometric rejection of z < 1 radio foregrounds leaves Cl J1001 as the second strongest overdensity, while even using all radio sources Cl. J1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z greater than or similar to 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.

Radio Selection of the Most Distant Galaxy Clusters

Strazzullo V;
2017-01-01

Abstract

We show that the most distant X-ray-detected cluster known to date, Cl. J1001 at z(spec) = 2.506, hosts a strong overdensity of radio sources. Six of them are individually detected (within 10 '') in deep 0.'' 75 resolution VLA 3 GHz imaging, with S-3 GHz > 8 mu Jy. Of the six, an active galactic nucleus (AGN) likely affects the radio emission in two galaxies, while star formation is the dominant source powering the remaining four. We searched for cluster candidates over the full COSMOS 2 deg(2) field using radio-detected 3 GHz sources and looking for peaks in Sigma(5) density maps. Cl J1001 is the strongest overdensity by far with > 10 sigma, with a simple z(phot) > 1.5 preselection. A cruder photometric rejection of z < 1 radio foregrounds leaves Cl J1001 as the second strongest overdensity, while even using all radio sources Cl. J1001 remains among the four strongest projected overdensities. We conclude that there are great prospects for future deep and wide-area radio surveys to discover large samples of the first generation of forming galaxy clusters. In these remarkable structures, widespread star formation and AGN activity of massive galaxy cluster members, residing within the inner cluster core, will ultimately lead to radio continuum as one of the most effective means for their identification, with detection rates expected in the ballpark of 0.1-1 per square degree at z greater than or similar to 2.5. Samples of hundreds such high-redshift clusters could potentially constrain cosmological parameters and test cluster and galaxy formation models.
File in questo prodotto:
File Dimensione Formato  
Daddi_2017_ApJL_846_L31.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
3902_11368_2964872_EUT.pdf

Open Access dal 11/09/2018

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2964872
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 15
social impact