ABSTRACT: The present study is focused on the comprehensive gas phase electronic structure characterization of 2,8-bis-(diphenylphosphoryl)-dibenzo[b,d]thiophene (PPT), a promising ambipolar phosphorescent host material recently introduced in organic light-emitting diodes (OLEDs). This molecular system can be considered ideally formed by two diphenylphosphine oxide (dPPO) moieties functionalizing the small dibenzothiophene (DBT) core. PPT is characterized by high triplet energy and is known as good vacuum sublimable electron transporting material for blue OLEDs. The triphenyl phosphine oxide (TPPO) molecule has been chosen as the model compound of the dPPO groups in PPT. A combined experimental and theoretical study by density functional theory of the gas phase electronic structure of TPPO and PPT has been performed through X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy measured at the carbon and oxygen 1s regions. The study represents a detailed characterization of the impact of the single building blocks on the electronic structure of the whole PPT molecule. Moreover, it confirms that the phosphine oxide groups act as breaking points of the π-conjugation between the DBT core of PPT and the outer groups, leaving the electronic structures of the compound practically matching those of the central DBT moiety.

PPT Isolated Molecule and Its Building Block Moieties Studied by C1s and O 1s Gas Phase X‑ray Photoelectron and Photoabsorption Spectroscopies

Giovanna Fronzoni
;
Daniele Toffoli;Elisa Bernes;
2020-01-01

Abstract

ABSTRACT: The present study is focused on the comprehensive gas phase electronic structure characterization of 2,8-bis-(diphenylphosphoryl)-dibenzo[b,d]thiophene (PPT), a promising ambipolar phosphorescent host material recently introduced in organic light-emitting diodes (OLEDs). This molecular system can be considered ideally formed by two diphenylphosphine oxide (dPPO) moieties functionalizing the small dibenzothiophene (DBT) core. PPT is characterized by high triplet energy and is known as good vacuum sublimable electron transporting material for blue OLEDs. The triphenyl phosphine oxide (TPPO) molecule has been chosen as the model compound of the dPPO groups in PPT. A combined experimental and theoretical study by density functional theory of the gas phase electronic structure of TPPO and PPT has been performed through X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy measured at the carbon and oxygen 1s regions. The study represents a detailed characterization of the impact of the single building blocks on the electronic structure of the whole PPT molecule. Moreover, it confirms that the phosphine oxide groups act as breaking points of the π-conjugation between the DBT core of PPT and the outer groups, leaving the electronic structures of the compound practically matching those of the central DBT moiety.
2020
Pubblicato
File in questo prodotto:
File Dimensione Formato  
published_acs.jpcc..pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.8 MB
Formato Adobe PDF
2.8 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
jp0c01764_si_001.pdf

Accesso chiuso

Descrizione: Supporting information
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 473.55 kB
Formato Adobe PDF
473.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2965246
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact