We give a possible extension for shears and overshears in the case of two non commutative (quaternionic) variables in relation with the associated vector fields and flows. We present a possible definition of volume preserving automorphisms, even though there is no quaternionic volume form on H2 . Using this, we determine a class of quaternionic automorphisms for which the Ander- sen-Lempert theory applies. Finally, we exhibit an example of a quaternionic automor- phism, which is not in the in the closure of the set of finite compositions of volume preserving quaternionic shears.

On a class of automorphisms in H2 which resemble the property of preserving volume

Fabio Vlacci
2021-01-01

Abstract

We give a possible extension for shears and overshears in the case of two non commutative (quaternionic) variables in relation with the associated vector fields and flows. We present a possible definition of volume preserving automorphisms, even though there is no quaternionic volume form on H2 . Using this, we determine a class of quaternionic automorphisms for which the Ander- sen-Lempert theory applies. Finally, we exhibit an example of a quaternionic automor- phism, which is not in the in the closure of the set of finite compositions of volume preserving quaternionic shears.
File in questo prodotto:
File Dimensione Formato  
Mathematische Nachrichten - 2021 - Prezelj - On a class of automorphisms in H2 which resemble the property of preserving.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 242.61 kB
Formato Adobe PDF
242.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2966485_Mathematische Nachrichten - 2021 - Prezelj - On a class of automorphisms in H2 which resemble the property of preserving-Post_print.pdf

Open Access dal 01/05/2022

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 820.44 kB
Formato Adobe PDF
820.44 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2966485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact