In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surrogate-assisted optimisation framework is presented. The computational budget limits the number of high-fidelity simulations which makes impossible to accurately approximate the landscape. This motivates the use of cheap low-fidelity simulations to obtain more information about the unexplored locations of the design space. The information stemming from numerical experiments of various fidelities can be fused together with multi-fidelity Gaussian process regression to build an accurate surrogate model despite the low number of high-fidelity simulations. We propose a new strategy for automatically selecting the fidelity level of the surrogate model update. The proposed method is extended to multi-objective applications. Although, Gaussian processes can inherently model uncertain processes, here the deterministic input and uncertain parameters are treated separately and only the design space is modelled with a Gaussian process. The probabilistic space is modelled with a polynomial chaos expansion to allow also uncertainties of non-Gaussian type. The combination of the above techniques allows us to efficiently carry out a (multi-objective) design optimisation under uncertainty which otherwise would be impractical.
Multi-fidelity design optimisation strategy under uncertainty with limited computational budget
Korondi, Péter Zénó
;Marchi, Mariapia;Parussini, Lucia;Poloni, Carlo
2020-01-01
Abstract
In this work, a design optimisation strategy is presented for expensive and uncertain single- and multi-objective problems. Computationally expensive design fitness evaluations prohibit the application of standard optimisation techniques and the direct calculation of risk measures. Therefore, a surrogate-assisted optimisation framework is presented. The computational budget limits the number of high-fidelity simulations which makes impossible to accurately approximate the landscape. This motivates the use of cheap low-fidelity simulations to obtain more information about the unexplored locations of the design space. The information stemming from numerical experiments of various fidelities can be fused together with multi-fidelity Gaussian process regression to build an accurate surrogate model despite the low number of high-fidelity simulations. We propose a new strategy for automatically selecting the fidelity level of the surrogate model update. The proposed method is extended to multi-objective applications. Although, Gaussian processes can inherently model uncertain processes, here the deterministic input and uncertain parameters are treated separately and only the design space is modelled with a Gaussian process. The probabilistic space is modelled with a polynomial chaos expansion to allow also uncertainties of non-Gaussian type. The combination of the above techniques allows us to efficiently carry out a (multi-objective) design optimisation under uncertainty which otherwise would be impractical.File | Dimensione | Formato | |
---|---|---|---|
Korondi2020_Article_Multi-fidelityDesignOptimisati(1).pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
3.54 MB
Formato
Adobe PDF
|
3.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.