The manner in which the intermolecular potential u(r) governs structural relaxation in liquids is a long standing problem in condensed matter physics. Herein, we show, in agreement with recent experimental results, that diffusion coefficients for simulated Lennard-Jones m-6 liquids (8 <= m <= 36) in normal and moderately supercooled states are a unique function of the variable p(gamma)/T, where p is density and T is temperature. The scaling exponent gamma is a material specific constant whose magnitude is related to the steepness of the repulsive part of u(r), evaluated around the distance of closest approach between particles probed in the supercooled regime. Approximations of u(r) in terms of inverse power laws are also discussed.

Thermodynamic scaling of diffusion in supercooled Lennard-Jones liquids

Coslovich D;
2008-01-01

Abstract

The manner in which the intermolecular potential u(r) governs structural relaxation in liquids is a long standing problem in condensed matter physics. Herein, we show, in agreement with recent experimental results, that diffusion coefficients for simulated Lennard-Jones m-6 liquids (8 <= m <= 36) in normal and moderately supercooled states are a unique function of the variable p(gamma)/T, where p is density and T is temperature. The scaling exponent gamma is a material specific constant whose magnitude is related to the steepness of the repulsive part of u(r), evaluated around the distance of closest approach between particles probed in the supercooled regime. Approximations of u(r) in terms of inverse power laws are also discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2969167
 Avviso

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 150
social impact