The CSL model predicts a progressive breakdown of the quantum superposition principle, with a noise randomly driving the state of the system towards a localized one, thus accounting for the emergence of a classical world within a quantum framework. In the original model the noise is supposed to be white, but since white noises do not exist in nature, it becomes relevant to identify some of its spectral properties. Experimental data set an upper bound on its frequencies, while in this paper we bound it from below. We do so in two ways: by considering a 'minimal' measurement setup, requiring that the collapse is completed within the measurement time; and in a measurement modeling-independent way, by requiring that the fluctuations average to zero before the measurement time.

Minimum measurement time: lower bound on the frequency cutoff for collapse models

Bassi, Angelo;Ferialdi, Luca
2020-01-01

Abstract

The CSL model predicts a progressive breakdown of the quantum superposition principle, with a noise randomly driving the state of the system towards a localized one, thus accounting for the emergence of a classical world within a quantum framework. In the original model the noise is supposed to be white, but since white noises do not exist in nature, it becomes relevant to identify some of its spectral properties. Experimental data set an upper bound on its frequencies, while in this paper we bound it from below. We do so in two ways: by considering a 'minimal' measurement setup, requiring that the collapse is completed within the measurement time; and in a measurement modeling-independent way, by requiring that the fluctuations average to zero before the measurement time.
Pubblicato
https://iopscience.iop.org/article/10.1088/1751-8121/ab8673
File in questo prodotto:
File Dimensione Formato  
10.1088@1751-8121@ab8673.pdf

Open Access dal 12/05/2021

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 833.14 kB
Formato Adobe PDF
833.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2969301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact