In this contribution we describe the preparation and characterization of a series of cross-linked films based on the combination of an elastin-derived biomimetic polypeptide (Human elastin-like polypeptide (HELP)) with alginate (ALG) to obtain a composite with enhanced properties. ALG/HELP composite films loaded with the hydrophobic natural antioxidant curcumin were prepared by solvent casting method followed by the cross-linking with calcium chloride. The compatibility between the two components as well as the final properties was evaluated. The micro-morphological study of films showed a homogeneous structure, but the film tensile strength decrease with HELP content and elongation at break was adversely affected by biopolymer addition. Spectroscopic and thermal analyses confirmed an interaction between ALG and HELP which also causes a modification in swelling kinetics and faster degradation. Moreover, the study of curcumin release showed a controlled delivery up to 10 days with a faster release rate in the presence of HELP. Human Dermal Fibroblasts (hDF) were used to test the in vitro cytocompatibility. The antioxidant activity correlated to the increase of HELP content suggested the applicability of these composites to develop smart biomaterials. Overall, these features indicated how this composite material has considerable potential as customizable platforms for various biomedical applications.

Alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application

Bandiera, Antonella;
2020-01-01

Abstract

In this contribution we describe the preparation and characterization of a series of cross-linked films based on the combination of an elastin-derived biomimetic polypeptide (Human elastin-like polypeptide (HELP)) with alginate (ALG) to obtain a composite with enhanced properties. ALG/HELP composite films loaded with the hydrophobic natural antioxidant curcumin were prepared by solvent casting method followed by the cross-linking with calcium chloride. The compatibility between the two components as well as the final properties was evaluated. The micro-morphological study of films showed a homogeneous structure, but the film tensile strength decrease with HELP content and elongation at break was adversely affected by biopolymer addition. Spectroscopic and thermal analyses confirmed an interaction between ALG and HELP which also causes a modification in swelling kinetics and faster degradation. Moreover, the study of curcumin release showed a controlled delivery up to 10 days with a faster release rate in the presence of HELP. Human Dermal Fibroblasts (hDF) were used to test the in vitro cytocompatibility. The antioxidant activity correlated to the increase of HELP content suggested the applicability of these composites to develop smart biomaterials. Overall, these features indicated how this composite material has considerable potential as customizable platforms for various biomedical applications.
Pubblicato
https://www.sciencedirect.com/science/article/pii/S0141813020338381
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0141813020338381-main.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0141813020338381-mmc1.pdf

Accesso chiuso

Descrizione: Supplementary material
Tipologia: Altro materiale allegato
Licenza: Copyright Editore
Dimensione 539.11 kB
Formato Adobe PDF
539.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
11368_2969492_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2969492
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact