Zirconia implants are appreciated in some clinical indications in light of their aesthetic appearance and good biocompatibility. The aim of this work was to evaluate the performance of a newly developed two-piece zirconia/polyether ketone ketone (PEKK) implant-abutment combination after long-term cyclic loading in a hydrothermal environment, using a new protocol adapted from two available ISO standards. Sixteen implants (n = 8/group) were embedded according to ISO 14801 and divided into two groups: implants in the Observational Group (OG) were cyclically loaded for 60 days (98 N, 10 million loading cycles, 2 Hz) in 85 °C water in a chewing simulator, while non-loaded/non-aged implants (as-received) constituted the Control Group (CG). After 4.7 million loading cycles, one OG implant fractured in the chewing simulator. The surviving implants were compared to CG implants by X-ray diffraction (XRD) to investigate potential ageing as suggested by ISO 13356, but also μ-Raman spectroscopy, Focused-Ion-Beam - Scanning-Electron-Microscopy (FIB-SEM), and load-to-fracture. Ageing was shown to have limited influence on the evaluated zirconia implant, with increased monoclinic content after loading/ageing being to a shallow transformed zone of ~2 μm at the implant surface. However, OG implants showed a significantly decreased fracture load of 751 ± 231 N (CG: 995 ± 161 N; p =.046). These values enable clinical application, but the fact that one failure was recorded during cyclic fatigue along with the significant decrease in strength after cyclic loading/ageing suggest that there may be room for further optimization of especially the PEKK abutment. Furthermore, good agreement was observed between the fracture modes of the implant that failed during the cyclic fatigue experiment and the in vivo failure of one implant during pre-clinical trials, validating the interest of the in vitro protocol used in this work to check the reliability of zirconia implant.

Reliability of an injection-moulded two-piece zirconia implant with PEKK abutment after long-term thermo-mechanical loading

Sergo, V
Membro del Collaboration Group
;
2020-01-01

Abstract

Zirconia implants are appreciated in some clinical indications in light of their aesthetic appearance and good biocompatibility. The aim of this work was to evaluate the performance of a newly developed two-piece zirconia/polyether ketone ketone (PEKK) implant-abutment combination after long-term cyclic loading in a hydrothermal environment, using a new protocol adapted from two available ISO standards. Sixteen implants (n = 8/group) were embedded according to ISO 14801 and divided into two groups: implants in the Observational Group (OG) were cyclically loaded for 60 days (98 N, 10 million loading cycles, 2 Hz) in 85 °C water in a chewing simulator, while non-loaded/non-aged implants (as-received) constituted the Control Group (CG). After 4.7 million loading cycles, one OG implant fractured in the chewing simulator. The surviving implants were compared to CG implants by X-ray diffraction (XRD) to investigate potential ageing as suggested by ISO 13356, but also μ-Raman spectroscopy, Focused-Ion-Beam - Scanning-Electron-Microscopy (FIB-SEM), and load-to-fracture. Ageing was shown to have limited influence on the evaluated zirconia implant, with increased monoclinic content after loading/ageing being to a shallow transformed zone of ~2 μm at the implant surface. However, OG implants showed a significantly decreased fracture load of 751 ± 231 N (CG: 995 ± 161 N; p =.046). These values enable clinical application, but the fact that one failure was recorded during cyclic fatigue along with the significant decrease in strength after cyclic loading/ageing suggest that there may be room for further optimization of especially the PEKK abutment. Furthermore, good agreement was observed between the fracture modes of the implant that failed during the cyclic fatigue experiment and the in vivo failure of one implant during pre-clinical trials, validating the interest of the in vitro protocol used in this work to check the reliability of zirconia implant.
File in questo prodotto:
File Dimensione Formato  
Reliability of an injection-moulded two-piece zirconia implant with PEKK abutment after long-term thermo-mechanical loading Pre proof Ridotto.pdf

Open Access dal 10/07/2022

Descrizione: Articolo intero
Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Creative commons
Dimensione 713.46 kB
Formato Adobe PDF
713.46 kB Adobe PDF Visualizza/Apri
1-s2.0-S1751616120305208-main_compressed.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 779.16 kB
Formato Adobe PDF
779.16 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2969975
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact