Fluorescent, imprinted nanosized polymers for the detection of irinotecan have been synthesised using a napthalimide polymerisable derivative (2-allyl-6-[2-(aminoethyl)-amino] napthalimide) as functional monomer. The imprinted polymers contain ethylene glycol dimethacrylate (EGDMA) as a cross-linker and were prepared by high dilution radical polymerisation in dimethylsulphoxide (DMSO). The material was able to rebind irinotecan up to 18 nmol/mg with good specificity. Fluorescence emission at 525 nm (excitation at 448 nm) was quenched by increasing concentrations of irinotecan via a static mechanism and also in analytically useful environments as mixtures of human plasma and organic solvents. This allowed the direct detection of irinotecan (in the 10 nM-30 µM range) in human plasma treated with acetonitrile; the limit of detection (LOD) was 9.4 nM, with within-run variability of 10% and day-to-day variability of 13%.

Fluorescent Imprinted Nanoparticles for the Effective Monitoring of Irinotecan in Human Plasma

Tommasini, Martina;Pellizzoni, Elena;Iacuzzi, Valentina;Posocco, Paola;Forzato, Cristina;Bertoncin, Paolo;Berti, Federico
2020-01-01

Abstract

Fluorescent, imprinted nanosized polymers for the detection of irinotecan have been synthesised using a napthalimide polymerisable derivative (2-allyl-6-[2-(aminoethyl)-amino] napthalimide) as functional monomer. The imprinted polymers contain ethylene glycol dimethacrylate (EGDMA) as a cross-linker and were prepared by high dilution radical polymerisation in dimethylsulphoxide (DMSO). The material was able to rebind irinotecan up to 18 nmol/mg with good specificity. Fluorescence emission at 525 nm (excitation at 448 nm) was quenched by increasing concentrations of irinotecan via a static mechanism and also in analytically useful environments as mixtures of human plasma and organic solvents. This allowed the direct detection of irinotecan (in the 10 nM-30 µM range) in human plasma treated with acetonitrile; the limit of detection (LOD) was 9.4 nM, with within-run variability of 10% and day-to-day variability of 13%.
2020
29-ago-2020
Pubblicato
File in questo prodotto:
File Dimensione Formato  
nanomaterials-10-01707.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF Visualizza/Apri
nanomaterials-10-01707-s001.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2970899
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact