We present a blind time-delay cosmographic analysis for the lens system DES J0408-5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine themeasured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the 'effective' time-delay distance corresponding to the redshifts of the deflector and the lensed quasar D-Delta t(eff) = 3382(-115)(+146) Mpc and the angular diameter distance to the deflector D-d = 1711(-280)(+376) Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H-0 = 74.2(-3.0)(+2.7) km s(-1) Mpc(-1) assuming a flat Lambda CDM cosmology and a uniform prior for Omega(m) as Omega(m) similar to U(0.05, 0.5). This measurement gives the most precise constraint on H-0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H-0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H-0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2 sigma discrepancy from the cosmic microwave background measurement.

STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354

Costanzi Alunno Cerbolini, M.;
2020-01-01

Abstract

We present a blind time-delay cosmographic analysis for the lens system DES J0408-5354. This system is extraordinary for the presence of two sets of multiple images at different redshifts, which provide the opportunity to obtain more information at the cost of increased modelling complexity with respect to previously analysed systems. We perform detailed modelling of the mass distribution for this lens system using three band Hubble Space Telescope imaging. We combine themeasured time delays, line-of-sight central velocity dispersion of the deflector, and statistically constrained external convergence with our lens models to estimate two cosmological distances. We measure the 'effective' time-delay distance corresponding to the redshifts of the deflector and the lensed quasar D-Delta t(eff) = 3382(-115)(+146) Mpc and the angular diameter distance to the deflector D-d = 1711(-280)(+376) Mpc, with covariance between the two distances. From these constraints on the cosmological distances, we infer the Hubble constant H-0 = 74.2(-3.0)(+2.7) km s(-1) Mpc(-1) assuming a flat Lambda CDM cosmology and a uniform prior for Omega(m) as Omega(m) similar to U(0.05, 0.5). This measurement gives the most precise constraint on H-0 to date from a single lens. Our measurement is consistent with that obtained from the previous sample of six lenses analysed by the H-0 Lenses in COSMOGRAIL's Wellspring (H0LiCOW) collaboration. It is also consistent with measurements of H-0 based on the local distance ladder, reinforcing the tension with the inference from early Universe probes, for example, with 2.2 sigma discrepancy from the cosmic microwave background measurement.
File in questo prodotto:
File Dimensione Formato  
staa828.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 5.27 MB
Formato Adobe PDF
5.27 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2970913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 115
social impact