Using archival X-ray observations and a lognormal population model, we estimate constraints on the intrinsic scatter in halo mass at fixed optical richness for a galaxy cluster sample identified in Dark Energy Survey Year-One (DES-Y1) data with the redMaPPer algorithm. We examine the scaling behaviour of X-ray temperatures, TX, with optical richness, λRM, for clusters in the redshift range 0.2 < z < 0.7. X-ray temperatures are obtained from Chandra and XMM observations for 58 and 110 redMaPPer systems, respectively. Despite non-uniform sky coverage, the TX measurements are > 50 per cent complete for clusters with λRM > 130. Regression analysis on the two samples produces consistent posterior scaling parameters, from which we derive a combined constraint on the residual scatter, σln T | λ = 0.275 ± 0.019. Joined with constraints for TX scaling with halo mass from the Weighing the Giants program and richness-temperature covariance estimates from the LoCuSS sample, we derive the richness-conditioned scatter in mass, σln M | λ = 0.30 ± 0.04 (stat) ± 0.09 (sys), at an optical richness of approximately 100. Uncertainties in external parameters, particularly the slope and variance of the TX-mass relation and the covariance of TX and λRM at fixed mass, dominate the systematic error. The 95 per cent confidence region from joint sample analysis is relatively broad, σln M | λ ∈ [0.14, 0.55], or a factor 10 in variance.
Mass variance from archival X-ray properties of Dark Energy Survey Year-1 galaxy clusters
Costanzi M.;
2019-01-01
Abstract
Using archival X-ray observations and a lognormal population model, we estimate constraints on the intrinsic scatter in halo mass at fixed optical richness for a galaxy cluster sample identified in Dark Energy Survey Year-One (DES-Y1) data with the redMaPPer algorithm. We examine the scaling behaviour of X-ray temperatures, TX, with optical richness, λRM, for clusters in the redshift range 0.2 < z < 0.7. X-ray temperatures are obtained from Chandra and XMM observations for 58 and 110 redMaPPer systems, respectively. Despite non-uniform sky coverage, the TX measurements are > 50 per cent complete for clusters with λRM > 130. Regression analysis on the two samples produces consistent posterior scaling parameters, from which we derive a combined constraint on the residual scatter, σln T | λ = 0.275 ± 0.019. Joined with constraints for TX scaling with halo mass from the Weighing the Giants program and richness-temperature covariance estimates from the LoCuSS sample, we derive the richness-conditioned scatter in mass, σln M | λ = 0.30 ± 0.04 (stat) ± 0.09 (sys), at an optical richness of approximately 100. Uncertainties in external parameters, particularly the slope and variance of the TX-mass relation and the covariance of TX and λRM at fixed mass, dominate the systematic error. The 95 per cent confidence region from joint sample analysis is relatively broad, σln M | λ ∈ [0.14, 0.55], or a factor 10 in variance.File | Dimensione | Formato | |
---|---|---|---|
stz2689.pdf
accesso aperto
Descrizione: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©2019 by the Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Tipologia:
Documento in Versione Editoriale
Licenza:
Digital Rights Management non definito
Dimensione
1.82 MB
Formato
Adobe PDF
|
1.82 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.