High-contrast, high-resolution imaging of biomedical specimens is indispensable for studying organ function and pathologies. Conventional histology, the gold standard for soft-tissue visualization, is limited by its anisotropic spatial resolution, elaborate sample preparation, and lack of quantitative image information. X-ray absorption or phase tomography have been identified as promising alternatives enabling non-destructive, distortion-free three-dimensional (3D) imaging. However, reaching sufficient contrast and resolution with a simple experimental procedure remains a major challenge. Here, we present a solution based on x-ray phase tomography through speckle-based imaging (SBI). We demonstrate on a mouse kidney that SBI delivers comprehensive 3D maps of hydrated, unstained soft tissue, revealing its microstructure and delivering quantitative tissue-density values at a density resolution of better than 2mg/cm3 and spatial resolution of better than 8 µm. We expect that SBI virtual histology will find widespread application in biomedicine and will open up new possibilities for research and histopathology.
Titolo: | X-ray phase tomography with near-field speckles for three-dimensional virtual histology |
Autori: | |
Data di pubblicazione: | 2020 |
Stato di pubblicazione: | Pubblicato |
Rivista: | |
Abstract: | High-contrast, high-resolution imaging of biomedical specimens is indispensable for studying organ function and pathologies. Conventional histology, the gold standard for soft-tissue visualization, is limited by its anisotropic spatial resolution, elaborate sample preparation, and lack of quantitative image information. X-ray absorption or phase tomography have been identified as promising alternatives enabling non-destructive, distortion-free three-dimensional (3D) imaging. However, reaching sufficient contrast and resolution with a simple experimental procedure remains a major challenge. Here, we present a solution based on x-ray phase tomography through speckle-based imaging (SBI). We demonstrate on a mouse kidney that SBI delivers comprehensive 3D maps of hydrated, unstained soft tissue, revealing its microstructure and delivering quantitative tissue-density values at a density resolution of better than 2mg/cm3 and spatial resolution of better than 8 µm. We expect that SBI virtual histology will find widespread application in biomedicine and will open up new possibilities for research and histopathology. |
Handle: | http://hdl.handle.net/11368/2971555 |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1364/OPTICA.399421 |
URL: | https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-7-9-1221&id=438501 |
Appare nelle tipologie: | 1.1 Articolo in Rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
optica-7-9-1221.pdf | Documento in Versione Editoriale | Digital Rights Management non definito | Open Access Visualizza/Apri |