We investigated the epitaxial growth of single-layer molybdenum disulfide (MoS2) on graphene/Ir(111), aiming to understand its steps and mechanism and verify the stability of the heterostructure. By means of high-resolution X-ray photoelectron spectroscopy, we have revealed that accurate temperature control is crucial in allowing the formation and avoiding the degradation of single-layer MoS2 on graphene. We observed that keeping the substrate temperature T>800 K during the growth promotes efficient sulfur intercalation under graphene and the dissolution of sulfur in the Ir bulk, two processes that have been targeted as ones mainly responsible for irreversible degradation of the MoS2 single layer on graphene. We believe that these results could be instrumental in understanding and improving the epitaxial growth protocols for the growth of heterostructures combining epitaxial graphene and transition-metal dichalcogenides.
Growth Mechanism and Thermal Stability of a MoS2–Graphene Interface: A High-Resolution Core-Level Photoelectron Spectroscopy Study
Loi, FedericoMembro del Collaboration Group
;Sbuelz, LucaMembro del Collaboration Group
;Lacovig, PaoloMembro del Collaboration Group
;Bignardi, Luca
Membro del Collaboration Group
;Baraldi, AlessandroMembro del Collaboration Group
2020-01-01
Abstract
We investigated the epitaxial growth of single-layer molybdenum disulfide (MoS2) on graphene/Ir(111), aiming to understand its steps and mechanism and verify the stability of the heterostructure. By means of high-resolution X-ray photoelectron spectroscopy, we have revealed that accurate temperature control is crucial in allowing the formation and avoiding the degradation of single-layer MoS2 on graphene. We observed that keeping the substrate temperature T>800 K during the growth promotes efficient sulfur intercalation under graphene and the dissolution of sulfur in the Ir bulk, two processes that have been targeted as ones mainly responsible for irreversible degradation of the MoS2 single layer on graphene. We believe that these results could be instrumental in understanding and improving the epitaxial growth protocols for the growth of heterostructures combining epitaxial graphene and transition-metal dichalcogenides.File | Dimensione | Formato | |
---|---|---|---|
acs.jpcc.0c05037-2.pdf
Accesso chiuso
Descrizione: Main Article
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.19 MB
Formato
Adobe PDF
|
2.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
jp0c05037_si_001.pdf
Accesso chiuso
Descrizione: Supporting information
Tipologia:
Altro materiale allegato
Licenza:
Copyright Editore
Dimensione
2.58 MB
Formato
Adobe PDF
|
2.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.