In this paper, preconditioners for the conjugate gradient method are studied to solve the Newton system with symmetric positive definite Jacobian. In particular, we define a sequence of preconditioners built by means of Symmetric Rank one (SR1) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) low-rank updates. We develop conditions under which the SR1 update maintains the preconditioner symmetric positive definite. Spectral analysis of the SR1 preconditioned Jacobians shows an improved eigenvalue distribution as the Newton iteration proceeds. A compact matrix formulation of the preconditioner update is developed which reduces the cost of its application and is more suitable to parallel implementation. Some notes on the implementation of the corresponding Inexact Newton method are given and some numerical results on a number of model problems illustrate the efficiency of the proposed preconditioners.

Compact quasi-Newton preconditioners for symmetric positive definite linear systems

Martinez Angeles
2020-01-01

Abstract

In this paper, preconditioners for the conjugate gradient method are studied to solve the Newton system with symmetric positive definite Jacobian. In particular, we define a sequence of preconditioners built by means of Symmetric Rank one (SR1) and Broyden-Fletcher-Goldfarb-Shanno (BFGS) low-rank updates. We develop conditions under which the SR1 update maintains the preconditioner symmetric positive definite. Spectral analysis of the SR1 preconditioned Jacobians shows an improved eigenvalue distribution as the Newton iteration proceeds. A compact matrix formulation of the preconditioner update is developed which reduces the cost of its application and is more suitable to parallel implementation. Some notes on the implementation of the corresponding Inexact Newton method are given and some numerical results on a number of model problems illustrate the efficiency of the proposed preconditioners.
File in questo prodotto:
File Dimensione Formato  
nla.2322.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
11368_2972343_print.pdf

accesso aperto

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Digital Rights Management non definito
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2972343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact