Atomically-defined graphene nanoribbons (GNRs), which are narrow strips of graphene that feature a quantum confinement-induced bandgap, have shown great promise for applications in the next generation of semiconductor devices. Although numerous studies have demonstrated the bottom-up synthesis of all-carbon GNRs, a comparatively limited number of reports have focused on the preparation of nitrogen-doped GNRs, with two general types of architectures demonstrated to date. Herein, we describe the design, synthesis, and characterization of a new class of nitrogen-containing GNRs consisting of repeating tetrabenzopentacene molecular subunits. Our findings may afford additional possibilities and opportunities with regard to the directed bottom-up synthesis of heteroatom-doped, carbon-based nanoscale electronics.
Bottom-up synthesis of nitrogen-containing graphene nanoribbons from the tetrabenzopentacene molecular motif
Feng, Zhijing;Kladnik, Gregor;Cossaro, Albano;Verdini, Alberto;Comelli, Giovanni;Cvetko, Dean;Morgante, Alberto;
2020-01-01
Abstract
Atomically-defined graphene nanoribbons (GNRs), which are narrow strips of graphene that feature a quantum confinement-induced bandgap, have shown great promise for applications in the next generation of semiconductor devices. Although numerous studies have demonstrated the bottom-up synthesis of all-carbon GNRs, a comparatively limited number of reports have focused on the preparation of nitrogen-doped GNRs, with two general types of architectures demonstrated to date. Herein, we describe the design, synthesis, and characterization of a new class of nitrogen-containing GNRs consisting of repeating tetrabenzopentacene molecular subunits. Our findings may afford additional possibilities and opportunities with regard to the directed bottom-up synthesis of heteroatom-doped, carbon-based nanoscale electronics.File | Dimensione | Formato | |
---|---|---|---|
Carbon_Feng.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.98 MB
Formato
Adobe PDF
|
1.98 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.