We consider both a hierarchical scenario of galaxy formation and an independent evolution of the three main galactic morphologies: elliptical/S0, spiral and irregular. We separate the dust residing within galaxies from the dust ejected in the intracluster medium. To the latter, we apply thermal sputtering. The model results are compared to low-to-intermediate redshift observations of dust masses. We find that in any of the considered scenarios, elliptical/S0 galaxies contribute negligibly to the present-time intracluster dust, despite producing the majority of gas-phase metals in galaxy clusters. Spiral galaxies, instead, provide both the bulk of the spatially unresolved dust and of the dust ejected into the intracluster medium. The total dust-to-gas mass ratio in galaxy clusters amounts to 10-4, while the intracluster medium dust-to-gas mass ratio amounts to 10-6 at most. These dust abundances are consistent with the estimates of cluster observations at 0.2 < z < 1. We propose that galactic sources, spiral galaxies in particular, are the major contributors to the cluster dust budget.

On the origin of dust in galaxy clusters at low-to-intermediate redshift

Gjergo, Eda
;
Palla, Marco;Matteucci, Francesca;Lacchin, Elena;Biviano, Andrea;
2020-01-01

Abstract

We consider both a hierarchical scenario of galaxy formation and an independent evolution of the three main galactic morphologies: elliptical/S0, spiral and irregular. We separate the dust residing within galaxies from the dust ejected in the intracluster medium. To the latter, we apply thermal sputtering. The model results are compared to low-to-intermediate redshift observations of dust masses. We find that in any of the considered scenarios, elliptical/S0 galaxies contribute negligibly to the present-time intracluster dust, despite producing the majority of gas-phase metals in galaxy clusters. Spiral galaxies, instead, provide both the bulk of the spatially unresolved dust and of the dust ejected into the intracluster medium. The total dust-to-gas mass ratio in galaxy clusters amounts to 10-4, while the intracluster medium dust-to-gas mass ratio amounts to 10-6 at most. These dust abundances are consistent with the estimates of cluster observations at 0.2 < z < 1. We propose that galactic sources, spiral galaxies in particular, are the major contributors to the cluster dust budget.
2020
Pubblicato
https://academic.oup.com/mnras/article/493/2/2782/5736028
File in questo prodotto:
File Dimensione Formato  
staa431.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2972966
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact