Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.

Dark Energy Survey Year 1 Results: the lensing imprint of cosmic voids on the Cosmic Microwave Background

Costanzi, M;
2020-01-01

Abstract

Cosmic voids gravitationally lens the cosmic microwave background (CMB) radiation, resulting in a distinct imprint on degree scales. We use the simulated CMB lensing convergence map from the MICE N-body simulation to calibrate our detection strategy for a given void definition and galaxy tracer density. We then identify cosmic voids in DES Year 1 data and stack the Planck 2015 lensing convergence map on their locations, probing the consistency of simulated and observed void lensing signals. When fixing the shape of the stacked convergence profile to that calibrated from simulations, we find imprints at the 3σ significance level for various analysis choices. The best measurement strategies based on the MICE calibration process yield S/N ≈ 4 for DES Y1, and the best-fit amplitude recovered from the data is consistent with expectations from MICE (A ≈ 1). Given these results as well as the agreement between them and N-body simulations, we conclude that the previously reported excess integrated Sachs-Wolfe (ISW) signal associated with cosmic voids in DES Y1 has no counterpart in the Planck CMB lensing map.
File in questo prodotto:
File Dimensione Formato  
staa3231.pdf

Accesso chiuso

Tipologia: Bozza finale post-referaggio (post-print)
Licenza: Copyright Editore
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
staa3231.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2974051
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 20
social impact