We present the weak-lensing mass calibration of the stellar-mass-based μ⋆ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time, we are able to perform a calibration of μ⋆ at high redshifts, z > 0.33. In a blinded analysis, we use ∼6000 clusters split into 12 subsets spanning the ranges 0.1 ≤ z < 0.65 and μ⋆ up to ∼5.5×1013M⊙ , and infer the average masses of these subsets through modelling of their stacked weak-lensing signal. In our model, we account for the following sources of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the source sample, deviations from the Navarro-Frenk-White halo profile, halo triaxiality, and projection effects. We use the inferred masses to estimate the joint mass-μ⋆-z scaling relation given by ⟨M200c|μ⋆,z⟩=M0(μ⋆/5.16×1012M⊙)Fμ⋆((1+z)/1.35)Gz . We find M0=(1.14±0.07)×1014M⊙ with Fμ⋆=0.76±0.06 and Gz = -1.14 ± 0.37. We discuss the use of μ⋆ as a complementary mass proxy to the well-studied richness λ for: (i) exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; and (ii) testing systematics such as projection effects for applications in cluster cosmology.
μ⋆ Masses: Weak Lensing Calibration of the Dark Energy Survey Year 1 redMaPPer Clusters using Stellar Masses
Costanzi, M;
2020-01-01
Abstract
We present the weak-lensing mass calibration of the stellar-mass-based μ⋆ mass proxy for redMaPPer galaxy clusters in the Dark Energy Survey Year 1. For the first time, we are able to perform a calibration of μ⋆ at high redshifts, z > 0.33. In a blinded analysis, we use ∼6000 clusters split into 12 subsets spanning the ranges 0.1 ≤ z < 0.65 and μ⋆ up to ∼5.5×1013M⊙ , and infer the average masses of these subsets through modelling of their stacked weak-lensing signal. In our model, we account for the following sources of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the source sample, deviations from the Navarro-Frenk-White halo profile, halo triaxiality, and projection effects. We use the inferred masses to estimate the joint mass-μ⋆-z scaling relation given by ⟨M200c|μ⋆,z⟩=M0(μ⋆/5.16×1012M⊙)Fμ⋆((1+z)/1.35)Gz . We find M0=(1.14±0.07)×1014M⊙ with Fμ⋆=0.76±0.06 and Gz = -1.14 ± 0.37. We discuss the use of μ⋆ as a complementary mass proxy to the well-studied richness λ for: (i) exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; and (ii) testing systematics such as projection effects for applications in cluster cosmology.File | Dimensione | Formato | |
---|---|---|---|
staa2687.pdf
Accesso chiuso
Tipologia:
Bozza finale post-referaggio (post-print)
Licenza:
Copyright Editore
Dimensione
2.44 MB
Formato
Adobe PDF
|
2.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.