Carbon nanotubes (CNTs) have been promoted as nanodevices in the biomedicine areas of diagnosis and therapy. In terms of drug delivery, CNTs could be useful in the case of hydrophobic drugs and multiple co-deliveries of therapeutic and imaging molecules. Epithelial cells, being specialized in absorption and secretion, are the first barrier to overcome. At the same time, several frequent tumors are of epithelial origin (cervix, ovarian, liver). Synchrotron-based imaging and spectroscopic techniques are suitable tools to follow the fate of nanodrugs in epithelial cells. We present an example of multi-microscopy approach combining soft X-ray spectromicroscopy at the TwinMic beamline (Elettra Synchrotron, Trieste, Italy) with light and Scanning Electron (SEM) microscopies. In particular, we show that 2–4 h exposure to SWCNTs is not toxic (no viability changes) to a model of cervical epithelial cells, even though it causes temporary perturbation in the membrane and intracellular structures of exposed cells.
Synchrotron soft X-ray microscopy and XRF to image Single-walled carbon nanotubes in epithelial cells
Romano F.;Ricci G.;Pascolo L.
2020-01-01
Abstract
Carbon nanotubes (CNTs) have been promoted as nanodevices in the biomedicine areas of diagnosis and therapy. In terms of drug delivery, CNTs could be useful in the case of hydrophobic drugs and multiple co-deliveries of therapeutic and imaging molecules. Epithelial cells, being specialized in absorption and secretion, are the first barrier to overcome. At the same time, several frequent tumors are of epithelial origin (cervix, ovarian, liver). Synchrotron-based imaging and spectroscopic techniques are suitable tools to follow the fate of nanodrugs in epithelial cells. We present an example of multi-microscopy approach combining soft X-ray spectromicroscopy at the TwinMic beamline (Elettra Synchrotron, Trieste, Italy) with light and Scanning Electron (SEM) microscopies. In particular, we show that 2–4 h exposure to SWCNTs is not toxic (no viability changes) to a model of cervical epithelial cells, even though it causes temporary perturbation in the membrane and intracellular structures of exposed cells.File | Dimensione | Formato | |
---|---|---|---|
Synchrotron soft X-ray microscopy and XRF to image Single-walled carbon nanotubes in epithelial cells.pdf
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
6.24 MB
Formato
Adobe PDF
|
6.24 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.