Pompe disease (PD) is an autosomal recessive lysosomal storage disorder due to deficient activity of the acid alpha glucosidase enzyme (GAA). As a consequence of the enzymatic defect, undigested glycogen accumulates within lysosomes. Most patients affected by the late-onset (LO) phenotype carry in at least one allele the c.-32-13T>G variant, which leads to exon 2 exclusion from the pre-mRNA. These patients display a variable and suboptimal response to enzyme replacement therapy. To identify novel therapeutic approaches, we developed a fluorescent GAA exon 2 splicing assay and screened a library of US Food and Drug Administration (FDA)-approved compounds. This led to the identification of several drugs able to restore normal splicing. Among these, we further validated the effects of the iron chelator deferoxamine (Defe) in c.-32-13T>G fibroblasts. Defe treatment resulted in a 2-fold increase of GAA exon 2 inclusion and a 40% increase in enzymatic activity. Preliminary results suggest that this effect is mediated by the regulation of iron availability, at least partially. RNA-seq experiments also showed that Defe might shift the balance of splicing factor levels toward a profile promoting GAA exon 2 inclusion. This work provides the basis for drug repurposing and development of new chemically modified molecules aimed at improving the clinical outcome in LO-PD patients.

Deferoxamine mesylate improves splicing and GAA activity of the common c.-32-13T>G allele in late-onset PD patient fibroblasts

Buratti E.
;
Peruzzo P.;Braga L.;Romano M.;Giacca M.;
2021-01-01

Abstract

Pompe disease (PD) is an autosomal recessive lysosomal storage disorder due to deficient activity of the acid alpha glucosidase enzyme (GAA). As a consequence of the enzymatic defect, undigested glycogen accumulates within lysosomes. Most patients affected by the late-onset (LO) phenotype carry in at least one allele the c.-32-13T>G variant, which leads to exon 2 exclusion from the pre-mRNA. These patients display a variable and suboptimal response to enzyme replacement therapy. To identify novel therapeutic approaches, we developed a fluorescent GAA exon 2 splicing assay and screened a library of US Food and Drug Administration (FDA)-approved compounds. This led to the identification of several drugs able to restore normal splicing. Among these, we further validated the effects of the iron chelator deferoxamine (Defe) in c.-32-13T>G fibroblasts. Defe treatment resulted in a 2-fold increase of GAA exon 2 inclusion and a 40% increase in enzymatic activity. Preliminary results suggest that this effect is mediated by the regulation of iron availability, at least partially. RNA-seq experiments also showed that Defe might shift the balance of splicing factor levels toward a profile promoting GAA exon 2 inclusion. This work provides the basis for drug repurposing and development of new chemically modified molecules aimed at improving the clinical outcome in LO-PD patients.
File in questo prodotto:
File Dimensione Formato  
2020-Buratti_Dardis_GAA.pdf

accesso aperto

Descrizione: Reprint
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2977767
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact