Increased hyaluronic acid (HA) production is often associated with cancer progression. In malignant pleural mesothelioma (MPM), HA is found at elevated levels in pleural effusions and sera of patients, and it has been widely debated whether MPM cells are able to produce HA by themselves or through the release of growth factors stimulating other cells. Another key component of the MPM microenvironment is C1q, which can act as a pro-tumorigenic factor favoring cell adhesion, migration and proliferation. The aim of the current study was to prove that MPM primary cells are able to synthesize HA and to inquire the stimulus given by C1q–HA matrix to HA synthesis. We confirmed the presence of a HA coat and cable-like structures around MPM primary cells, as well as an intracellular pool, mainly localized in the cytoplasmic and perinuclear region. After evaluating HA synthase (HAS) enzymes’ basal expression in MPM primary cells, we found that C1q bound to HA was able to impinge upon HA homeostasis by upregulating HAS3 both at the mRNA and the protein levels. High expression of HAS3 has been correlated with a shorter life expectancy in MPM by bioinformatical analysis. These data confirmed that C1q bound to HA may exert pro-tumorigenic activity and identified HAS3 as a potential target in MPM.

C1q–Ha matrix regulates the local synthesis of hyaluronan in malignant pleural mesothelioma by modulating has3 expression

Vidergar R.;Balduit A.
;
Zacchi P.;Agostinis C.;Mangogna A.;Salton F.;Zanconati F.;Confalonieri M.;Bulla R.
2021-01-01

Abstract

Increased hyaluronic acid (HA) production is often associated with cancer progression. In malignant pleural mesothelioma (MPM), HA is found at elevated levels in pleural effusions and sera of patients, and it has been widely debated whether MPM cells are able to produce HA by themselves or through the release of growth factors stimulating other cells. Another key component of the MPM microenvironment is C1q, which can act as a pro-tumorigenic factor favoring cell adhesion, migration and proliferation. The aim of the current study was to prove that MPM primary cells are able to synthesize HA and to inquire the stimulus given by C1q–HA matrix to HA synthesis. We confirmed the presence of a HA coat and cable-like structures around MPM primary cells, as well as an intracellular pool, mainly localized in the cytoplasmic and perinuclear region. After evaluating HA synthase (HAS) enzymes’ basal expression in MPM primary cells, we found that C1q bound to HA was able to impinge upon HA homeostasis by upregulating HAS3 both at the mRNA and the protein levels. High expression of HAS3 has been correlated with a shorter life expectancy in MPM by bioinformatical analysis. These data confirmed that C1q bound to HA may exert pro-tumorigenic activity and identified HAS3 as a potential target in MPM.
2021
Pubblicato
https://www.mdpi.com/2072-6694/13/3/416
File in questo prodotto:
File Dimensione Formato  
cancers-13-00416(1).pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 8.41 MB
Formato Adobe PDF
8.41 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2979537
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 6
social impact