One task often encountered in surveillance videos is the recognition of a target—e.g. the license plate of a vehicle. Often, the quality of a single video frame does not permit a reliable recognition. If multiple frames are available, it is possible to combine them in order to generate a single image with lower noise (frame averaging) and/or higher resolution (super-resolution). In order for these techniques to work, it is necessary to accurately estimate the motion of the object of interest in the recorded footage. In this paper, we introduce a method capable of accurately computing the perspective transformation that describes the motion of a planar object. The method minimizes the squared distance between the transformed image and a reference, computed over a user-defined region of interest, and uses the partial derivatives in order to significantly speed up the computation. This approach is inspired by the well known Kanade–Lucas–Tomasi feature tracker.
Perspective registration and multi-frame super-resolution of license plates in surveillance videos
Guarnieri, Gabriele;Guzzi, Francesco;Carrato, Sergio
;
2021-01-01
Abstract
One task often encountered in surveillance videos is the recognition of a target—e.g. the license plate of a vehicle. Often, the quality of a single video frame does not permit a reliable recognition. If multiple frames are available, it is possible to combine them in order to generate a single image with lower noise (frame averaging) and/or higher resolution (super-resolution). In order for these techniques to work, it is necessary to accurately estimate the motion of the object of interest in the recorded footage. In this paper, we introduce a method capable of accurately computing the perspective transformation that describes the motion of a planar object. The method minimizes the squared distance between the transformed image and a reference, computed over a user-defined region of interest, and uses the partial derivatives in order to significantly speed up the computation. This approach is inspired by the well known Kanade–Lucas–Tomasi feature tracker.File | Dimensione | Formato | |
---|---|---|---|
2020_fsi-di.pdf
Accesso chiuso
Descrizione: fsi-di 2020
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.