The use of peptides to template inorganic nanoparticle formation has attracted great interest as a green route to advance structures with innovative physicochemical properties for a variety of applications that range from biomedicine and sensing, to catalysis. In particular, short-peptide gelators offer the advantage of providing dynamic supramolecular environments for the templating effect on the formation of inorganic nanoparticles directly in the resulting gels, and ideally without using further reductants or chemical reagents. This mini-review describes the recent progress in the field to outline future research directions towards dynamic functional materials that exploit the synergy between supramolecular chemistry, nanoscience, and the interface between organic and inorganic components for advanced performance.

Peptide Gelators to Template Inorganic Nanoparticle Formation

Bellotto, Ottavia;Cringoli, Maria C;Fornasiero, Paolo;Marchesan, Silvia
2021-01-01

Abstract

The use of peptides to template inorganic nanoparticle formation has attracted great interest as a green route to advance structures with innovative physicochemical properties for a variety of applications that range from biomedicine and sensing, to catalysis. In particular, short-peptide gelators offer the advantage of providing dynamic supramolecular environments for the templating effect on the formation of inorganic nanoparticles directly in the resulting gels, and ideally without using further reductants or chemical reagents. This mini-review describes the recent progress in the field to outline future research directions towards dynamic functional materials that exploit the synergy between supramolecular chemistry, nanoscience, and the interface between organic and inorganic components for advanced performance.
2021
Pubblicato
File in questo prodotto:
File Dimensione Formato  
Gels2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2980269
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact