The research carried out during this Ph.D. project and reported in this Thesis is focused on the design, preparation and characterization of different supramolecular porphyrin systems, both metallacyclic and polymeric. Chapter 1 contains a general introduction on the key role of porphyrins as functional and structural building units for the assembly of artificial discrete supramolecular structures, together with the main designing concepts of the metal-mediated assembly. Chapter 2 is focused on the investigation of the reactivity of the two stereoisomers [cis,cis,cisRuCl2(CO)2(dmso-O)(dmso-S)] and [cis,cis,trans-RuCl2(CO)2(dmso-S)2] towards 4′cisDPyP. The complexes were first tested toward the model ligand 4′MPyP and then 4′cisDPyP obtaining, besides the already known 2+2 metallacycle of porphyrins [trans,cis,cis-RuCl2(CO)2(4′cisDPyP)]2, the chiral stereoisomeric metallacycles [{trans,cis,cis-RuCl2(CO)2}(4′cisDPyP)2{cis,cis,cis-RuCl2(CO)2}] and [cis,cis,cis-RuCl2(CO)2(4′cisDPyP)]2, in which the chiral {cis,cis,cis-RuCl2(CO)2} fragment has either a C or A handedness. In Chapter 3 a synthetic strategy for the expansion of porphyrin metallacycles is described. This strategy afforded triporphyrin arrays that, after metalation, might lead to more stable supramolecular assemblies. Furthermore, we also synthesized heteroleptic metallacycles containing different porphyrins (i.e. 3′ and 4′-pyridylporphyrins) that have unprecedented geometries (i.e. vase, ladder,zig-zag). During my three years of Ph.D. I have also been involved in other projects involving Ru(II)-dmso complexes, in particular: In Chapter 4 we demonstrate that ruthenation of a porphyrin can be performed under relatively mild conditions using the Ru(II) monocarbonyl complex [Ru(CO)(dmso)5][PF6]2 that – besides CO –features exclusively labile dmso ligands. Even though this finding might seem trivial, it is only the second example that uses a Ru(II) carbonyl for porphyrin ruthenation, the first one having been reported almost 50 years ago and then neglected. From a practical point of view, we show the spectacular effect of propionic acid as solvent for performing the ruthenation of neutral and anionic model porphyrins with Ru3(CO)12. The Ru(CO)-porphyrins were then exploited, in Chapter 5 to prepare Ru/Zn porphyrin polymeric networks. In particular we demonstrate that PTA (1,3,5-triaza-7-phosphaadamantane) behaves as an orthogonal ligand between Ru(II) and Zn(II), since it selectively binds through the P atom to ruthenium and through one or more of the N atoms to zinc. This property of PTA was exploited for preparing the two monomeric porphyrin adducts with axially bound PTA, [Ru(TPP)(PTA-kP)2] and [Zn(TPP)(PTA-kN)]. Next, we prepared a number of heterobimetallic Ru/Zn porphyrin polymeric networks — and two discrete molecular systems — mediated by P,N-bridging PTA in which either both metals reside inside a porphyrin core, or one metal belongs to a porphyrin, either Ru(TPP) or Zn(TPP), and the other to a complex or salt of the complementary metal. Chapter 6 reports a new two-step strategy for the synthesis of bis-heteroleptic Ru(II) polypyridyl compounds of general formula [Ru(chel)2(chel′)]2+, where chel is a chelating dimmine ligand, starting from cis-locked Ru(II) precursors. These were synthesized by replacing either the two chlorides, or a chloride and a dmso, from the [cis-RuCl2(dmso)4] complex with an inert chelating anion (O–O) (i.e. malonate, oxalate, acetylacetonate). This allowed us to have more control in the coordination of the first ligand (chel), decreasing the formation of stereoisomeric mixtures. The acid-sensitive nature of the chelating anion allows its acid-assisted substitution with the second ligand chel′ even at room temperature.

La ricerca svolta durante questo dottorato di ricerca. e riportata in questa Tesi è incentrata sulla progettazione, preparazione e caratterizzazione di diversi sistemi porfirinici supramolecolari, sia metallaciclici che polimerici. Il Capitolo 1 contiene un'introduzione generale sul ruolo chiave delle porfirine come building block funzionali e strutturali per l'assemblaggio di strutture supramolecolari discrete, insieme ai principali concetti del metal-mediated assembly. Il Capitolo 2 è incentrato sullo studio della reattività dei due stereoisomeri [cis,cis,cisRuCl2(CO)2(dmso-O)(dmso-S)] e [cis,cis,trans-RuCl2(CO)2(dmso-S)2] verso la 4′cisDPyP. I complessi sono stati prima testati sul legante modello 4′MPyP e successivamente utilizzando la 4′cisDPyP ottenendo, oltre al già noto metallaciclo porfirinico 2+2 [trans,cis,cisRuCl2(CO)2(4′cisDPyP)]2, anche i due relativi stereoisomeri chirali [{trans,cis,cisRuCl2(CO)2} 4′cisDPyP)2{cis,cis,cis-RuCl2(CO)2}] e [cis,cis,cis-RuCl2(CO)2(4′cisDPyP)], in cui il frammento {cis,cis,cis-RuCl2(CO)2} può avere chiralità C o A. Nel Capitolo 3 viene descritta una strategia sintetica che permette di ottenere metallacicli porfirinici più estesi. Questa strategia ha permesso di ottenere sistemi triporfirinici, che, dopo metallazione, potrebbero portare a formare assemblati supramolecolari più stabili. Inoltre, sono anche stati sintetizzati metallacicli eterolettici contenenti porfirine diverse (i.e. 3 ′ e 4′-piridilporfirine) e aventi diversi tipi di geometrie (vaso, scala, zig-zag). Durante i miei tre anni di dottorato di ricerca sono stato anche coinvolto in altri progetti che coinvolgono complessi Ru (II)-dmso, in particolare: Nel Capitolo 4 è stato dimostrato che la rutenazione di una porfirina può essere eseguita in condizioni relativamente blande utilizzando il complesso monocarbonilico di Ru(II) [Ru(CO)(dmso)5][PF6]2 che - oltre al CO - presenta esclusivamente leganti labili. Questo è solo il secondo esempio di utilizzo di un complesso carbonilico di Ru(II) per la rutenazione di una porfirina, dopo il primo riportato quasi 50 anni fa e poi dimenticato. Da un punto di vista pratico, si mostra il sorprendente effetto dell'acido propionico come solvente per eseguire la rutenazione di porfirine modello neutre e anioniche utilizzano il cluster Ru3(CO)12. Le Ru(CO)-porfirine sono state poi sfruttate, nel Capitolo 5, per preparare network polimerici di Ru/Zn porfirine. In particolare, è stato dimostrato che il PTA (1,3,5-triaza-7-fosfadamamantano) si comporta come un legante ortogonale tra Ru (II) e Zn (II), poiché si lega selettivamente attraverso l'atomo di P al rutenio e attraverso uno o più degli atomi di N allo zinco. Questa proprietà del PTA è stata sfruttata per preparare due addotti porfirinici monomerici aventi un PTA legato assialmente,[Ru(TPP)(PTA-kP)2] e [Zn(TPP)(PTA-kN)]. Successivamente, sono stati preparati una serie di network polimerici di Ru /Zn porfirine eterobimetallici - e due sistemi molecolari discreti - mediati da PTA in cui entrambi i metalli risiedono all'interno di uno dei centri porfirinici, o un metallo appartiene a una porfirina, o Ru (TPP) o Zn (TPP), e l'altro a un complesso o sale dell’altro metallo. Il Capitolo 6 riporta una nuova strategia a stadi, per la sintesi di composti polipiridilici bis-eterolettici di Ru (II) di formula generale [Ru (chel)2(chel′))]2+, dove chel è un legante chelante dimminico, a partire da precursori di Ru(II) cis bloccati. Questi sono stati sintetizzati sostituendo i due cloruri, o un cloruro e un dmso, dal complesso [cis-RuCl2(dmso)4] con un anione chelante inerte (O – O) (malonato, ossalato, acetilacetonato). Questo permette di avere un maggior controllo nella coordinazione del primo legante (chel), diminuendo la formazione di miscele stereoisomeriche. La sensibilità all’ambiente acido dell’anione chelante ne permette la sostituzione con un secondo legante anche a temperatura ambiente.

THE ENDLESS POSSIBILITIES OF RUTHENIUM DMSO PRECURSORS IN MODERN COORDINATION CHEMISTRY: FROM NOVEL METALLACYCLES OF PORPHYRINS TO NEW ROUTES TO HETEROLEPTIC POLYPYRIDYL COMPOUNDS

VIDAL, ALESSIO
2021-03-05T00:00:00+01:00

Abstract

La ricerca svolta durante questo dottorato di ricerca. e riportata in questa Tesi è incentrata sulla progettazione, preparazione e caratterizzazione di diversi sistemi porfirinici supramolecolari, sia metallaciclici che polimerici. Il Capitolo 1 contiene un'introduzione generale sul ruolo chiave delle porfirine come building block funzionali e strutturali per l'assemblaggio di strutture supramolecolari discrete, insieme ai principali concetti del metal-mediated assembly. Il Capitolo 2 è incentrato sullo studio della reattività dei due stereoisomeri [cis,cis,cisRuCl2(CO)2(dmso-O)(dmso-S)] e [cis,cis,trans-RuCl2(CO)2(dmso-S)2] verso la 4′cisDPyP. I complessi sono stati prima testati sul legante modello 4′MPyP e successivamente utilizzando la 4′cisDPyP ottenendo, oltre al già noto metallaciclo porfirinico 2+2 [trans,cis,cisRuCl2(CO)2(4′cisDPyP)]2, anche i due relativi stereoisomeri chirali [{trans,cis,cisRuCl2(CO)2} 4′cisDPyP)2{cis,cis,cis-RuCl2(CO)2}] e [cis,cis,cis-RuCl2(CO)2(4′cisDPyP)], in cui il frammento {cis,cis,cis-RuCl2(CO)2} può avere chiralità C o A. Nel Capitolo 3 viene descritta una strategia sintetica che permette di ottenere metallacicli porfirinici più estesi. Questa strategia ha permesso di ottenere sistemi triporfirinici, che, dopo metallazione, potrebbero portare a formare assemblati supramolecolari più stabili. Inoltre, sono anche stati sintetizzati metallacicli eterolettici contenenti porfirine diverse (i.e. 3 ′ e 4′-piridilporfirine) e aventi diversi tipi di geometrie (vaso, scala, zig-zag). Durante i miei tre anni di dottorato di ricerca sono stato anche coinvolto in altri progetti che coinvolgono complessi Ru (II)-dmso, in particolare: Nel Capitolo 4 è stato dimostrato che la rutenazione di una porfirina può essere eseguita in condizioni relativamente blande utilizzando il complesso monocarbonilico di Ru(II) [Ru(CO)(dmso)5][PF6]2 che - oltre al CO - presenta esclusivamente leganti labili. Questo è solo il secondo esempio di utilizzo di un complesso carbonilico di Ru(II) per la rutenazione di una porfirina, dopo il primo riportato quasi 50 anni fa e poi dimenticato. Da un punto di vista pratico, si mostra il sorprendente effetto dell'acido propionico come solvente per eseguire la rutenazione di porfirine modello neutre e anioniche utilizzano il cluster Ru3(CO)12. Le Ru(CO)-porfirine sono state poi sfruttate, nel Capitolo 5, per preparare network polimerici di Ru/Zn porfirine. In particolare, è stato dimostrato che il PTA (1,3,5-triaza-7-fosfadamamantano) si comporta come un legante ortogonale tra Ru (II) e Zn (II), poiché si lega selettivamente attraverso l'atomo di P al rutenio e attraverso uno o più degli atomi di N allo zinco. Questa proprietà del PTA è stata sfruttata per preparare due addotti porfirinici monomerici aventi un PTA legato assialmente,[Ru(TPP)(PTA-kP)2] e [Zn(TPP)(PTA-kN)]. Successivamente, sono stati preparati una serie di network polimerici di Ru /Zn porfirine eterobimetallici - e due sistemi molecolari discreti - mediati da PTA in cui entrambi i metalli risiedono all'interno di uno dei centri porfirinici, o un metallo appartiene a una porfirina, o Ru (TPP) o Zn (TPP), e l'altro a un complesso o sale dell’altro metallo. Il Capitolo 6 riporta una nuova strategia a stadi, per la sintesi di composti polipiridilici bis-eterolettici di Ru (II) di formula generale [Ru (chel)2(chel′))]2+, dove chel è un legante chelante dimminico, a partire da precursori di Ru(II) cis bloccati. Questi sono stati sintetizzati sostituendo i due cloruri, o un cloruro e un dmso, dal complesso [cis-RuCl2(dmso)4] con un anione chelante inerte (O – O) (malonato, ossalato, acetilacetonato). Questo permette di avere un maggior controllo nella coordinazione del primo legante (chel), diminuendo la formazione di miscele stereoisomeriche. La sensibilità all’ambiente acido dell’anione chelante ne permette la sostituzione con un secondo legante anche a temperatura ambiente.
ALESSIO, ENZO
33
2019/2020
Settore CHIM/03 - Chimica Generale e Inorganica
Università degli Studi di Trieste
File in questo prodotto:
File Dimensione Formato  
TESI ALESSIO VIDAL.pdf

embargo fino al 05/03/2022

Descrizione: Tesi Alessio Vidal
Tipologia: Tesi di dottorato
Dimensione 19.33 MB
Formato Adobe PDF
19.33 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11368/2981623
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact