In the path towards the decarbonization of the maritime sector, Low Temperature Polymer Electrolyte Membrane Fuel Cells (LT-PEMFC) fed by hydrogen are gaining attention as they could guarantee zero local emissions propulsion. In this study, a process simulation model is implemented to analyze the influence of peak shaving in a hybrid LT-PEMFC/lithium-ion battery power plant for the propulsion of a small size RoRo car and passenger ferry in different operative conditions. Results show that battery peak shaving could allow a reduction of FC installed power of up to 72%. As for compressed H2 storage, the results show that for sailing time in the range of 5–10 min, Type I cylinders at 250 bar are a viable option. For longer routes, Type III cylinders at 350 bar or Type IV cylinders at 700 bar should be considered in order to avoid excessive reduction in the pay-load.
Comparison of different plant layouts and fuel storage solutions for fuel cells utilization on a small ferry
Dall'Armi C.;Micheli D.;Taccani R.
2021-01-01
Abstract
In the path towards the decarbonization of the maritime sector, Low Temperature Polymer Electrolyte Membrane Fuel Cells (LT-PEMFC) fed by hydrogen are gaining attention as they could guarantee zero local emissions propulsion. In this study, a process simulation model is implemented to analyze the influence of peak shaving in a hybrid LT-PEMFC/lithium-ion battery power plant for the propulsion of a small size RoRo car and passenger ferry in different operative conditions. Results show that battery peak shaving could allow a reduction of FC installed power of up to 72%. As for compressed H2 storage, the results show that for sailing time in the range of 5–10 min, Type I cylinders at 250 bar are a viable option. For longer routes, Type III cylinders at 350 bar or Type IV cylinders at 700 bar should be considered in order to avoid excessive reduction in the pay-load.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0360319921006935-main.pdf
Accesso chiuso
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright Editore
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.