Brain electrical activity in acute ischemic stroke is related to the hypoperfusion of cerebral tissue as manifestation of neurovascular coupling. EEG could be applicable for bedside functional monitoring in emergency settings. We aimed to investigate the relation between hyper-acute ischemic stroke EEG changes, measured with bedside wireless-EEG, and hypoperfused core-penumbra CT-perfusion (CTP) volumes. In addition, we investigated the association of EEG and CTP parameters with neurological deficit measured by NIHSS. We analyzed and processed EEG, CTP and clinical data of 31 anterior acute ischemic stroke patients registered within 4.5 h from symptom onset. Delta/alpha ratio (DAR), (delta + theta)/(alpha + beta) ratio (DTABR) and relative delta power correlated directly (ρ = 0.72; 0.63; 0.65, respectively), while alpha correlated inversely (ρ = − 0.66) with total hypoperfused volume. DAR, DTBAR and relative delta and alpha parameters also correlated with ischemic core volume (ρ = 0.55; 0.50; 0.59; − 0.51, respectively). The same EEG parameters and CTP volumes showed significant relation with NIHSS at admission. The multivariate stepwise regression showed that DAR was the strongest predictor of NIHSS at admission (p < 0.001). The results of this study showed that hyper-acute alterations of EEG parameters are highly related to the extent of hypoperfused tissue highlighting the value of quantitative EEG as a possible complementary tool in the evaluation of stroke severity and its potential role in acute ischemic stroke monitoring.

Early EEG Alterations Correlate with CTP Hypoperfused Volumes and Neurological Deficit: A Wireless EEG Study in Hyper-Acute Ischemic Stroke

Ajcevic M.
;
Miladinovic A.;Buoite Stella A.;Caruso P.;Ukmar M.;Cova M. A.;Naccarato M.;Accardo A.;Manganotti P.
2021-01-01

Abstract

Brain electrical activity in acute ischemic stroke is related to the hypoperfusion of cerebral tissue as manifestation of neurovascular coupling. EEG could be applicable for bedside functional monitoring in emergency settings. We aimed to investigate the relation between hyper-acute ischemic stroke EEG changes, measured with bedside wireless-EEG, and hypoperfused core-penumbra CT-perfusion (CTP) volumes. In addition, we investigated the association of EEG and CTP parameters with neurological deficit measured by NIHSS. We analyzed and processed EEG, CTP and clinical data of 31 anterior acute ischemic stroke patients registered within 4.5 h from symptom onset. Delta/alpha ratio (DAR), (delta + theta)/(alpha + beta) ratio (DTABR) and relative delta power correlated directly (ρ = 0.72; 0.63; 0.65, respectively), while alpha correlated inversely (ρ = − 0.66) with total hypoperfused volume. DAR, DTBAR and relative delta and alpha parameters also correlated with ischemic core volume (ρ = 0.55; 0.50; 0.59; − 0.51, respectively). The same EEG parameters and CTP volumes showed significant relation with NIHSS at admission. The multivariate stepwise regression showed that DAR was the strongest predictor of NIHSS at admission (p < 0.001). The results of this study showed that hyper-acute alterations of EEG parameters are highly related to the extent of hypoperfused tissue highlighting the value of quantitative EEG as a possible complementary tool in the evaluation of stroke severity and its potential role in acute ischemic stroke monitoring.
File in questo prodotto:
File Dimensione Formato  
Ajčevićetal, 2021_EarlyEEGCTP.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 710.72 kB
Formato Adobe PDF
710.72 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2985126
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 29
social impact