Electrospun polycaprolactone (PCL) membranes have been widely explored in the literature as a solution for several applications in tissue engineering and regenerative medicine. PCL hydrophobicity and its lack of bioactivity drastically limit its use in the medical field. To overcome these drawbacks, many promising strategies have been developed and proposed in the literature. In order to increase the bioactivity of electrospun PCL membranes designed for guided bone and tissue regeneration purposes, in the present work, the membranes were functionalized with a coating of bioactive lactose-modified chitosan (CTL). Since CTL can be used for the synthesis and stabilization of silver nanoparticles, a coating of this compound was employed here to provide antibacterial properties to the membranes. Scanning electron microscopy imaging revealed that the electrospinning process adopted here allowed us to obtain membranes with homogeneous fibers and without defects. Also, PCL membranes retained their mechanical properties after several weeks of aging in simulated body fluid, representing a valid support for cell growth and tissue development. CTL adsorption on membranes was investigated by fluorescence microscopy using fluorescein-labeled CTL, resulting in a homogeneous and slow release over time. Inductively coupled plasma–mass spectrometry was used to analyze the release of silver, which was shown to be stably bonded to the CTL coating and to be slowly released over time. The CTL coating improved MG63 osteoblast adhesion and proliferation on membranes. On the other hand, the presence of silver nanoparticles discouraged biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus without being cytotoxic. Overall, the stability and the biological and antibacterial properties make these membranes a valid and versatile material for applications in guided tissue regeneration and in other biomedical fields like wound healing.

Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration

Porrelli, Davide
;
Mardirossian, Mario;Musciacchio, Luigi;Berton, Federico;Crosera, Matteo;Turco, Gianluca
2021-01-01

Abstract

Electrospun polycaprolactone (PCL) membranes have been widely explored in the literature as a solution for several applications in tissue engineering and regenerative medicine. PCL hydrophobicity and its lack of bioactivity drastically limit its use in the medical field. To overcome these drawbacks, many promising strategies have been developed and proposed in the literature. In order to increase the bioactivity of electrospun PCL membranes designed for guided bone and tissue regeneration purposes, in the present work, the membranes were functionalized with a coating of bioactive lactose-modified chitosan (CTL). Since CTL can be used for the synthesis and stabilization of silver nanoparticles, a coating of this compound was employed here to provide antibacterial properties to the membranes. Scanning electron microscopy imaging revealed that the electrospinning process adopted here allowed us to obtain membranes with homogeneous fibers and without defects. Also, PCL membranes retained their mechanical properties after several weeks of aging in simulated body fluid, representing a valid support for cell growth and tissue development. CTL adsorption on membranes was investigated by fluorescence microscopy using fluorescein-labeled CTL, resulting in a homogeneous and slow release over time. Inductively coupled plasma–mass spectrometry was used to analyze the release of silver, which was shown to be stably bonded to the CTL coating and to be slowly released over time. The CTL coating improved MG63 osteoblast adhesion and proliferation on membranes. On the other hand, the presence of silver nanoparticles discouraged biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus without being cytotoxic. Overall, the stability and the biological and antibacterial properties make these membranes a valid and versatile material for applications in guided tissue regeneration and in other biomedical fields like wound healing.
File in questo prodotto:
File Dimensione Formato  
Porrelli et al 2021 ACS Appl Mater Interfaces.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Digital Rights Management non definito
Dimensione 11.58 MB
Formato Adobe PDF
11.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2986211
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 55
social impact