The large use of glass in buildings, and especially the presence of fenestrations and facade systems, represents a potential critical issue for people safety. The brittle nature of glass (with limited elastic deformation and resistance) is often enforced by its use in combination of several secondary components, whose reciprocal interaction and potential damage should be properly assessed. In the case of windows, accordingly, a special care should be spent for glass members but also for the framing system and possible adhesive or mechanical connections. This study aims at exploring the dynamic response and damage sensitivity of traditional glass window systems, based on the experimental derivation of few key material properties and mechanical parameters. To this aim the attention is focused on traditional, in-service windows that belongs to existing residential buildings and are typically sustained by timber frames, through a linear flexible connection. In doing so, major advantage is taken from experimental analysis, both in the static and dynamic field, for whole window assemblies of single components. For comparative purposes, selected window specimens including plastic (PVC) frame members and Insulated Glass Units (IGUs) are also taken into account in the paper. The static characteristics of the windows components are first preliminary derived. The dynamic performance of such a kind of systems is then experimentally explored with the support of modal analysis techniques and hard body impact procedures, including the experimental derivation of stiffness parameters for the frame members and the glass panels. Further assessment of experimental outcomes is finally achieved with the support of Finite Element numerical analyses.

Experimental mechanical analysis of traditional in-service glass windows subjected to dynamic tests and hard body impact

Bedon, Chiara
Membro del Collaboration Group
2021-01-01

Abstract

The large use of glass in buildings, and especially the presence of fenestrations and facade systems, represents a potential critical issue for people safety. The brittle nature of glass (with limited elastic deformation and resistance) is often enforced by its use in combination of several secondary components, whose reciprocal interaction and potential damage should be properly assessed. In the case of windows, accordingly, a special care should be spent for glass members but also for the framing system and possible adhesive or mechanical connections. This study aims at exploring the dynamic response and damage sensitivity of traditional glass window systems, based on the experimental derivation of few key material properties and mechanical parameters. To this aim the attention is focused on traditional, in-service windows that belongs to existing residential buildings and are typically sustained by timber frames, through a linear flexible connection. In doing so, major advantage is taken from experimental analysis, both in the static and dynamic field, for whole window assemblies of single components. For comparative purposes, selected window specimens including plastic (PVC) frame members and Insulated Glass Units (IGUs) are also taken into account in the paper. The static characteristics of the windows components are first preliminary derived. The dynamic performance of such a kind of systems is then experimentally explored with the support of modal analysis techniques and hard body impact procedures, including the experimental derivation of stiffness parameters for the frame members and the glass panels. Further assessment of experimental outcomes is finally achieved with the support of Finite Element numerical analyses.
File in questo prodotto:
File Dimensione Formato  
sss2702016.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 3.56 MB
Formato Adobe PDF
3.56 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2987851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact