Fundamental research and technological applications of topological insulators are hindered by the rarity of materials exhibiting a robust topologically nontrivial phase, especially in two dimensions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin Hall insulator with a sizable band gap of ∼0.5 eV that is a monolayer of jacutingaite, a naturally occurring layered mineral first discovered in 2008 in Brazil and recently synthesized. This system realizes the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially exfoliable two-dimensional monolayer, with helical edge states that are robust and that can be manipulated exploiting a unique strong interplay between spin-orbit coupling, crystal-symmetry breaking, and dielectric response.

Prediction of a Large-Gap and Switchable Kane-Mele Quantum Spin Hall Insulator

Marrazzo A.
;
2018-01-01

Abstract

Fundamental research and technological applications of topological insulators are hindered by the rarity of materials exhibiting a robust topologically nontrivial phase, especially in two dimensions. Here, by means of extensive first-principles calculations, we propose a novel quantum spin Hall insulator with a sizable band gap of ∼0.5 eV that is a monolayer of jacutingaite, a naturally occurring layered mineral first discovered in 2008 in Brazil and recently synthesized. This system realizes the paradigmatic Kane-Mele model for quantum spin Hall insulators in a potentially exfoliable two-dimensional monolayer, with helical edge states that are robust and that can be manipulated exploiting a unique strong interplay between spin-orbit coupling, crystal-symmetry breaking, and dielectric response.
2018
Pubblicato
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.120.117701
File in questo prodotto:
File Dimensione Formato  
PRL_2018_main_and_supplementary.pdf

Accesso chiuso

Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 8.95 MB
Formato Adobe PDF
8.95 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2988311
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 59
social impact