Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.
Precision and efficiency in solid-state pseudopotential calculations
Marrazzo A.;
2018-01-01
Abstract
Despite the enormous success and popularity of density-functional theory, systematic verification and validation studies are still limited in number and scope. Here, we propose a protocol to test publicly available pseudopotential libraries, based on several independent criteria including verification against all-electron equations of state and plane-wave convergence tests for phonon frequencies, band structure, cohesive energy and pressure. Adopting these criteria we obtain curated pseudopotential libraries (named SSSP or standard solid-state pseudopotential libraries), that we target for high-throughput materials screening (“SSSP efficiency”) and high-precision materials modelling (“SSSP precision”). This latter scores highest among open-source pseudopotential libraries available in the Δ-factor test of equations of states of elemental solids.File | Dimensione | Formato | |
---|---|---|---|
NPJCM_2018_main_and_supplementary.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
5.89 MB
Formato
Adobe PDF
|
5.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.