The experimental observation of a clear quantum signature of gravity is believed to be out of the grasp of current technology. However, several recent promising proposals to test the possible existence of non-classical features of gravity seem to be accessible by the state-of-art table-top experiments. Among them, some aim at measuring the gravitationally induced entanglement between two masses which would be a distinct non-classical signature of gravity. We explicitly study, in two of these proposals, the effects of decoherence on the system's dynamics by monitoring the corresponding degree of entanglement. We identify the required experimental conditions necessary to perform successfully the experiments. In parallel, we account also for the possible effects of the continuous spontaneous localization (CSL) model, which is the most known among the models of spontaneous wavefunction collapse. We find that any value of the parameters of the CSL model would completely hinder the generation of gravitationally induced entanglement.
Decoherence effects in non-classicality tests of gravity
Carlesso, Matteo;Bassi, Angelo;
2021-01-01
Abstract
The experimental observation of a clear quantum signature of gravity is believed to be out of the grasp of current technology. However, several recent promising proposals to test the possible existence of non-classical features of gravity seem to be accessible by the state-of-art table-top experiments. Among them, some aim at measuring the gravitationally induced entanglement between two masses which would be a distinct non-classical signature of gravity. We explicitly study, in two of these proposals, the effects of decoherence on the system's dynamics by monitoring the corresponding degree of entanglement. We identify the required experimental conditions necessary to perform successfully the experiments. In parallel, we account also for the possible effects of the continuous spontaneous localization (CSL) model, which is the most known among the models of spontaneous wavefunction collapse. We find that any value of the parameters of the CSL model would completely hinder the generation of gravitationally induced entanglement.File | Dimensione | Formato | |
---|---|---|---|
Rijavec_2021_New_J._Phys._23_043040.pdf
accesso aperto
Descrizione: articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.