All the heterotrophic life in the ocean, from bacteria to whales, is sustained by organic matter turnover. This "currency of life" exists in countless physical and chemical arrangements, spanning from small dissolved molecules to big sinking macroaggregates. Organic matter consumption, remineralization and production processes are essentially carried out by microbes. Photoautotrophic microbes are responsible for half of the Earth's carbon fixation, being the major organic matter source in the ocean. Marine heterotrophic microbes (Bacteria and Archaea) mediate organic matter turnover, effectively regulating carbon and energy fluxes in the ocean. Although developing over very small spatial and temporal scales, the interplay between marine microbes and organic matter is of pivotal importance for global biogeochemical dynamics. The overarching aim of this thesis was to investigate this interplay, and its biogeochemical consequences, encompassing different environmental forcing as well as spatial and temporal scales. The first Chapter was aimed to investigate how long-term environmental changes affect microbe-mediated organic matter processing. A monthly planktonic biogeochemical time series was analysed with a time-oriented machine learning approach. A prolonged salinity anomaly resulted to cause of profound biogeochemical changes in the study area, limiting microbe-mediated organic matter turnover for several years. In Chapter 2 the effect of a transient environmental perturbation, an exceptional cold event, on the metabolism of planktonic microbes was investigated. A high-frequency sampling during and after the event was coupled with experimental temperature manipulations; their outcomes demonstrated that during these phenomena microbial metabolic rates are at their lower thermal limit. Microbial growth was impaired even when the event ceased, highlighting how ecosystemic consequences of extreme weather phenomena extend beyond their duration. The third Chapter was focused on microscale interactions between Antarctic heterotrophic microbes and particulate organic matter. Microcosms experiment were carried out incubating natural free-living communities with phytodetritus. Outcomes from this research have highlighted that particulate matter composition substantially shapes the associated microbial community and thus its metabolic capabilities. Finally, in Chapter 4 organic matter degradation modes were investigated with respect to microbial lifestyle (i.e., free-living vs. particle-attached). Several Antarctic bacterial isolates were screened for their degradative potential when growing exposed to particles or in particle-free media. Production and activity of exoenzymes were finely tuned according to growth conditions and that the presence of particles enhanced the release of cell-free enzymes. The work done in this thesis furthers the current understanding of the biogeochemical implications of the marine microbes-organic matter interplay. By evaluating the consequences of regional perturbations, this thesis provides sound ecological and methodological frameworks to assess the effects of present and future changes on microbe-mediated organic matter turnover. Additionally, specific microbial assemblages, and thus degradation modes, could be associated with particulate matter composition, linking the microscale interactions between microbes and organic matter to global biogeochemical dynamics.
Tutte le forme di vita eterotrofa negli oceani, dai batteri alle balene, dipendono dalla sostanza organica. Questa "valuta" della vita è presente in una miriade di strutture chimiche e fisiche, dalle piccole molecole disciolte ai grandi aggregati che sedimentano lungo la colonna d'acqua. I processi di consumo, produzione e remineralizzazione della sostanza organica sono essenzialmente a carico degli organismi unicellulari. Insieme, eucarioti e procarioti fototrofi fissano circa la metà della CO2 su scala globale, rappresentando la prinicipale fonte di sostanza organica negli oceani. Questa vasta riserva di materia organica è processata, in maniera quasi esclusiva, dal batterioplancton (Bacteria e Archaea) eterotrofo. Sebbene la maggior parte delle interazioni tra questi e la sostanza organica avvengano su scale spaziali e temporali estremamente ridotte, questi processi regolano i flussi globali di carbonio ed energia, risultando di fondamentale importanza per la biogeochimica degli oceani. In quest'ottica, lo scopo principale di questo lavoro è di esaminare come questa interazione evolva a seguito di perturbazioni ambientali e quali siano gli effetti, a diverse scale temporali e spaziali, sulle dinamiche biogeochmiche. Il primo Capitolo si propone di analizzare gli effetti che i cambiamenti ambientali a lungo termine possono avere sul processamento della sostanza organica da parte del batterioplancton eterotrofo. A questo scopo, una serie temporale di dati biogeochimici è stata analizzata con l'ausilio del \textit{machine learning} per evidenziare il ruolo dei fattori ambientali nel determinare i cambiamenti osservati nei tassi di utilizzo della materia organica. Una prolungata siccità ha pesantemente influenzato la biogeochmica dell'area di studio, limitando il processamento microbico della sostanza organica per alcuni anni. Nel Capitolo 2 sono stati investigati gli effetti di un evento meteorologico estremo sui tassi di degradazione e produzione di materia organica a carico di procarioti eterotrofi. Grazie ad un campionamento effettuato durante e dopo l'evento, combinato con esperimenti di manipolazione della temperatura, questo capitolo mostra come le temperature eccezionalmente basse raggiunte durante l'evento abbiano rappresentato un limite termico per il metabolismo microbico. La crescita microbica è risultata limitata anche dopo la fine dell'evento, dimostrando che le conseguenze biogeochmice di eventi estremi perdurano oltre la durata degli stessi. Il lavoro descritto nel terzo Capitolo era mirato ad analizzare le interazioni di microscala tra le comunità microbiche e la materia organica particellata. A questo scopo, esperimenti di incubazione in microcosmi sono stati effettuati con comunità microbiche naturali antartiche e fitodetrito. I risultati di questi esperimenti hanno dimostrato che la composizione della materia organica particellata influenza la comunità microbica associata, selezionando per specifici \textit{taxa} microbici e quindi specifiche modalità di degradazione. Nel quarto Capitolo, una serie di esperimenti con isolati batterici antartici e fitodetrito sono stati messi a punto con lo scopo di indagare la relazione tra modalità di degradazione enzimatica e la presenza o assenza di sostanza organica particellata. La produzione e l'attività di esoenzimi è risultata finemente regolata dalle condizioni di crescita, con una spiccata produzione di esoenzimi liberi in presenza di particolato detritale. Il lavoro presentato in questa testi avanza le attuali conoscenze sulle implicazioni biogeochmiche delle interazioni tra i procarioti marini e la materia organica. Esaminando le consequenze di perturbazioni ecosistemiche, a breve e lungo termine, sul metabolismo microbico, questa tesi fornisce una solida base ecologica e metodologica per migliorare l'analisi e l'interpretazione ecologica di cambiamenti presenti e futuri.
Marine microbes and organic matter: the interplay driving the oceans' biogeochemical engine / Manna, Vincenzo. - (2021 Apr 23).
Marine microbes and organic matter: the interplay driving the oceans' biogeochemical engine
MANNA, VINCENZO
2021-04-23
Abstract
All the heterotrophic life in the ocean, from bacteria to whales, is sustained by organic matter turnover. This "currency of life" exists in countless physical and chemical arrangements, spanning from small dissolved molecules to big sinking macroaggregates. Organic matter consumption, remineralization and production processes are essentially carried out by microbes. Photoautotrophic microbes are responsible for half of the Earth's carbon fixation, being the major organic matter source in the ocean. Marine heterotrophic microbes (Bacteria and Archaea) mediate organic matter turnover, effectively regulating carbon and energy fluxes in the ocean. Although developing over very small spatial and temporal scales, the interplay between marine microbes and organic matter is of pivotal importance for global biogeochemical dynamics. The overarching aim of this thesis was to investigate this interplay, and its biogeochemical consequences, encompassing different environmental forcing as well as spatial and temporal scales. The first Chapter was aimed to investigate how long-term environmental changes affect microbe-mediated organic matter processing. A monthly planktonic biogeochemical time series was analysed with a time-oriented machine learning approach. A prolonged salinity anomaly resulted to cause of profound biogeochemical changes in the study area, limiting microbe-mediated organic matter turnover for several years. In Chapter 2 the effect of a transient environmental perturbation, an exceptional cold event, on the metabolism of planktonic microbes was investigated. A high-frequency sampling during and after the event was coupled with experimental temperature manipulations; their outcomes demonstrated that during these phenomena microbial metabolic rates are at their lower thermal limit. Microbial growth was impaired even when the event ceased, highlighting how ecosystemic consequences of extreme weather phenomena extend beyond their duration. The third Chapter was focused on microscale interactions between Antarctic heterotrophic microbes and particulate organic matter. Microcosms experiment were carried out incubating natural free-living communities with phytodetritus. Outcomes from this research have highlighted that particulate matter composition substantially shapes the associated microbial community and thus its metabolic capabilities. Finally, in Chapter 4 organic matter degradation modes were investigated with respect to microbial lifestyle (i.e., free-living vs. particle-attached). Several Antarctic bacterial isolates were screened for their degradative potential when growing exposed to particles or in particle-free media. Production and activity of exoenzymes were finely tuned according to growth conditions and that the presence of particles enhanced the release of cell-free enzymes. The work done in this thesis furthers the current understanding of the biogeochemical implications of the marine microbes-organic matter interplay. By evaluating the consequences of regional perturbations, this thesis provides sound ecological and methodological frameworks to assess the effects of present and future changes on microbe-mediated organic matter turnover. Additionally, specific microbial assemblages, and thus degradation modes, could be associated with particulate matter composition, linking the microscale interactions between microbes and organic matter to global biogeochemical dynamics.File | Dimensione | Formato | |
---|---|---|---|
thesis_rev.pdf
accesso aperto
Descrizione: Marine microbes and organic matter: the interplay driving the oceans' biogeochemical engine
Tipologia:
Tesi di dottorato
Dimensione
14.01 MB
Formato
Adobe PDF
|
14.01 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.