A series of four arrays made of a central Sn(IV) porphyrin as scaffold axially connected, via carboxylate functions, to two free-base porphyrins has been prepared and fully characterized. Three arrays in the series feature the same free-base unit and alternative tin-porphyrin macrocycles, and one consists of a second type of free-base and one chosen metallo-porphyrin. A thorough photophysical investigation has been performed on all arrays by means of time-resolved emission and absorption techniques. Specific focus has been given at identifying how structural modifications of the free-base and tin-porphyrin partners and/or variation of the solvent polarity can effectively translate into distinct photophysical behaviors. In particular, for systems SnTPP(Fb) 2 (1) and SnOEP(Fb) 2 (2), an ultrafast energy transfer process from the excited Sn(IV) porphyrin to the free-base unit occurs with unitary efficiency. For derivative SnTPP(FbR) 2 (3), the change of solvent from dichloromethane to toluene is accompanied by a neat change in the intercomponent quenching mechanism, from photoinduced electron transfer to energy transfer, upon excitation of the Sn(IV) porphyrin unit. Finally, for array SnTpFP(Fb) 2 (4), an ultrafast electron transfer quenching of both chromophores is detected in all solvents. This work provides a general outline, accompanied by clear experimental support, on possible ways to achieve a systematic fine-tuning of the quenching mechanism (from energy to electron transfer) of Sn(IV) multiporphyrin arrays.

Sn(IV) Multiporphyrin Arrays as Tunable Photoactive Systems

Amati A.;Cavigli P.;Demitri N.;Natali M.
;
Iengo E.
2019-01-01

Abstract

A series of four arrays made of a central Sn(IV) porphyrin as scaffold axially connected, via carboxylate functions, to two free-base porphyrins has been prepared and fully characterized. Three arrays in the series feature the same free-base unit and alternative tin-porphyrin macrocycles, and one consists of a second type of free-base and one chosen metallo-porphyrin. A thorough photophysical investigation has been performed on all arrays by means of time-resolved emission and absorption techniques. Specific focus has been given at identifying how structural modifications of the free-base and tin-porphyrin partners and/or variation of the solvent polarity can effectively translate into distinct photophysical behaviors. In particular, for systems SnTPP(Fb) 2 (1) and SnOEP(Fb) 2 (2), an ultrafast energy transfer process from the excited Sn(IV) porphyrin to the free-base unit occurs with unitary efficiency. For derivative SnTPP(FbR) 2 (3), the change of solvent from dichloromethane to toluene is accompanied by a neat change in the intercomponent quenching mechanism, from photoinduced electron transfer to energy transfer, upon excitation of the Sn(IV) porphyrin unit. Finally, for array SnTpFP(Fb) 2 (4), an ultrafast electron transfer quenching of both chromophores is detected in all solvents. This work provides a general outline, accompanied by clear experimental support, on possible ways to achieve a systematic fine-tuning of the quenching mechanism (from energy to electron transfer) of Sn(IV) multiporphyrin arrays.
File in questo prodotto:
File Dimensione Formato  
Iengo InorgChem2019 4399_4411.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Copyright Editore
Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2990201
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact