We report on the population of the 47 compact binary mergers detected with a false-alarm rate < 1yr^−1 in the second LIGO–Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at 39.7(+20.3,−9.1) solar masses , or a power law with a Gaussian feature peaking at 33.1(+4.0,−5.6) solar masses (90% credible interval). While the primary mass distribution must extend to ~ 65 solar masses or beyond, only 2.9 (+3.5, −1.7) % of systems have primary masses greater than 45 solar masses. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than 90°, giving rise to a negative effective inspiral spin parameter χeff. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing |χeff | > 0.01 are dynamically assembled. Third, we estimate merger rates, finding R = 23.9 (+14.3, −8.6) Gpc^−3 yr^−1 for BBH and R = 320 (+490, −240) Gpc^−3 yr^−1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility), but not faster than the star-formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.

Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog

Ansoldi, S.;Milotti, E.;Trovato, A.;
2021-01-01

Abstract

We report on the population of the 47 compact binary mergers detected with a false-alarm rate < 1yr^−1 in the second LIGO–Virgo Gravitational-Wave Transient Catalog, GWTC-2. We observe several characteristics of the merging binary black hole (BBH) population not discernible until now. First, the primary mass spectrum contains structure beyond a power-law with a sharp high-mass cut-off; it is more consistent with a broken power law with a break at 39.7(+20.3,−9.1) solar masses , or a power law with a Gaussian feature peaking at 33.1(+4.0,−5.6) solar masses (90% credible interval). While the primary mass distribution must extend to ~ 65 solar masses or beyond, only 2.9 (+3.5, −1.7) % of systems have primary masses greater than 45 solar masses. Second, we find that a fraction of BBH systems have component spins misaligned with the orbital angular momentum, giving rise to precession of the orbital plane. Moreover, 12% to 44% of BBH systems have spins tilted by more than 90°, giving rise to a negative effective inspiral spin parameter χeff. Under the assumption that such systems can only be formed by dynamical interactions, we infer that between 25% and 93% of BBH with non-vanishing |χeff | > 0.01 are dynamically assembled. Third, we estimate merger rates, finding R = 23.9 (+14.3, −8.6) Gpc^−3 yr^−1 for BBH and R = 320 (+490, −240) Gpc^−3 yr^−1 for binary neutron stars. We find that the BBH rate likely increases with redshift (85% credibility), but not faster than the star-formation rate (86% credibility). Additionally, we examine recent exceptional events in the context of our population models, finding that the asymmetric masses of GW190412 and the high component masses of GW190521 are consistent with our models, but the low secondary mass of GW190814 makes it an outlier.
2021
Pubblicato
https://iopscience.iop.org/article/10.3847/2041-8213/abe949
File in questo prodotto:
File Dimensione Formato  
Abbott_2021_ApJL_913_L7.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 4.79 MB
Formato Adobe PDF
4.79 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11368/2990296
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 491
  • ???jsp.display-item.citation.isi??? 206
social impact